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Figure 2: The Hamilton Method with Homothetic Preferences
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Note : The �gure illustrates Engel curves for homothetic preferences.

refer to the virtual household at the level of income at which the CPI estimates the cost of

living as the CPI household. Correspondingly, we refer to the virtual household at the level

of income at which Pt estimates the cost of living as the Hamilton household.

Therefore the Hamilton method's �bias�, Et, contains two elements:

1. CPI bias: The CPI di�ers from the true cost of living index of the CPI household due

to substitution, new goods, quality changes, etc.

2. Non-homotheticity: The CPI household and Hamilton household have di�erent levels

of income, and so experience di�erent changes in their true cost of living.

Previous analyses using the Hamilton method to assess CPI bias have con�ated these two

things. The rest of the paper develops and implements a method that does not su�er from

this �aw.
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3 Whose cost of living?

3.1 The CPI household

To disentangle genuine CPI bias from the e�ect of non-homotheticity, we �rst need to

determine the locations of the CPI household and the Hamilton household in the income

distribution.

For the CPI there is a well-established method of doing this due to Muellbauer (1976).

The CPI household has expenditure shares which match the expenditure weights in the CPI.

The expenditure weights in the CPI are the aggregate expenditure shares (that is the share

of each good in total household spending). The aggregate expenditure share of good k is in

turn a weighted mean of household expenditure shares for good k, where each household is

weighted by its share of total income:

W k
r,t =

∑

h

xh,r,t∑
xh,r,t

wkh,r,t. (7)

Given this, and the Working-Leser functional form for household-level shares assumed above,

we can write the aggregate share for food at time t, as:

W f
r,t =

∑

h

xh,r,t∑
xh,r,t

[
αfr,t + γff ln

(
pfr,t
pnr,t

)
+ βfr,t ln

(
xh,r,t
Pr,t

)]
(8)

= αfr,t + γff ln

(
pfr,t
pnr,t

)
− βf lnPr,t + βfr,t

∑

h

xh,r,t ln (xh,r,t)∑
xh,r,t

.

Thus the CPI household has income equal to
∑
h
xh,r,t ln(xh,r,t)∑

xh,r,t
.

We compute where the income of the CPI household lies in the household income distri-

bution for each year from 1974 to 1991 using the same PSID data as in Hamilton (2001a).

These calculations are illustrated in Figure 3. Over this period, the aggregate shares used

in the CPI correspond most closely to a household somewhere between the 68th and 77th
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Figure 3: Income Distribution Percentile of the CPI household
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Note : The �gure displays the percentile location of the CPI household in the U.S. income distribution for

di�erent years. The CPI household is de�ned as a virtual household with income
∑
h
xh,r,t ln xh,r,t∑

h xh,r,t
.

percentile of the household income distribution.7 The CPI is a plutocratic index and so

measures changes in the cost of living for a fairly a�uent household. As noted above, as a

measure of this household's true cost of living, the CPI may be biased because of substitu-

tion, new goods, quality changes and other biases discussed in the literature.

3.2 The Hamilton Household

Turning to the Hamilton household, we begin with the general de�nition (in logarithms) of

the true cost of living index for a household h, in region r, at period t. We de�ne reference

7Deaton (1998) similarly �nds that the U.S. CPI is usually around the 75th percentile of the household
income distribution.
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utility for household h, uh,0, to be the utility of that household in the base region (r = 0)

and base period (t = 0), where it faces the price vector p0(= p0,0). In logarithms, the true

cost of living index is then given by:8

lnCOLIh,r,t = lnC(uh,0,pr,t)− lnC(uh,0,p0), (9)

where C (uh,0,pr,t) is the money cost of obtaining utility level uh,0 at prices pr,t = [pfr,t, p
n
r,t].

This measures the resources necessary to maintain base-period utility at the new price vector

pr,t for this household, and the logarithm of the COLI measures the proportional change in

required resources.

For AIDS preferences,

lnC (uh,0,pt,r) = ln a (pr,t) + b (pr,t)uh,0, (10)

ln a(pr,t) = α0 +
∑

k=f,n

αk ln pkr,t +
∑

k=f,n

∑

l=f,n

γk,l ln p
k
r,t ln plr,t,

b(pr,t) =
∏

k=f,n

(pkr,t)
βk

,

where
∑
k=f,n αk = 1 and

∑
k=f,n γk,l =

∑
l=f,n γk,l =

∑
k=f,n β

k = 0. Thus, given

Hamilton's assumption of AIDS preferences, the true COLI is log-linear in utility, and not

independent of utility (or income) as Hamilton implies.

The food share is:

wfh,r,t = αf +
∑

k=f,n

γk ln pkr,t + βf ln

(
xh,r,t
a(pr,t)

)
, (11)


= αf +

∑

k=f,n

γk ln pkr,t + βf ln

(
xh,r,t
Pr,t

)
in Hamilton's notation


 .

Note in particular that ln a(pr,t) = lnPr,t, which is the price index corresponding to the

Hamilton household.

In the base period and region, prices are 1 (and log prices are zero), so that, ln a(p0) = α0

8uh,0 is not the only possible choice of reference utility level, but is the natural choice for comparison
with price indices, like the CPI, that use base period quantities as weights. We discuss this further below.
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and b(p0) = 1. As cost in period/region 0 must be equal to observed income in period/region

0, inverting gives utility in the base period and region as a function of observed income (xh,0)

uh,0 = lnxh,0 − α0. (12)

The cost of obtaining base period/region utility facing prices pr,t is then

lnC(pr,t, uh,0) = lnPr,t + b (pr,t) (lnxh,0 − α0) . (13)

Equation (13) shows that the Hamilton household has income level lnxh,0 = α0. Pr,t is the

true cost of living index only at this level of income. The value of α0 is not identi�ed by

the Hamilton method. A priori, there is no reason to think that α0 would also be the log

income level of the CPI household.

3.3 Decomposing the Hamilton Estimate

Solving Equation (13) for lnPr,t and taking changes gives:

4 lnPr,t = 4 lnC(pr,t, uh,0)−∆b (pr,t) (lnxh,0 − α0) , (14)

Also recall from Section 2 that Et is de�ned by Pr,t = Pr,0CPIr,t(1 +Et). Taking logs and

changes (recalling that CPI0,0 = 1 and E0 = 0), and rearranging this expression yields:

∆ lnPr,t = lnCPIr,t + ln(1 + Et). (15)

Combining Equations (14) and (15) and rearranging then gives:

ln(1 + Et) = [4 lnC(pr,t, uh,0)− lnCPIr,t]−∆b (pr,t) (lnxh,0 − α0) . (16)
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Evaluating this expression at the income level of the CPI household (xh,0 = xCPI) gives a

natural decomposition of the Hamilton correction:

− ln(1 + Et) = lnCPIr,t −∆ lnPr,t =
[
lnCPIr,t −4 lnC(pr,t, u(xCPI ,pr,t))

]
(17)

+
[
∆b(pr,t)(lnx

CPI − α0)
]
.

Hamilton's measure, − ln(1 + Et), captures the di�erence between the CPI (lnCPIr,t)

and the price index (∆ lnPr,t), and this measure can be further decomposed into actual CPI

bias, which is given by the �rst term
[
lnCPIr,t −4 lnC(pr,t, u(xCPI ,pr,t))

]
, and the part

due to non-homotheticity, which is given by the second term
[
∆b(pr,t)(lnx

CPI − α0)
]
.9

This decomposition is illustrated in Figure 4. The four panels illustrate four possible

cases. In each panel, the logarithm of base period nominal income is on the horizontal axis

and the CPI, changes in Pt and changes in the true cost of living (all in logarithms) are

measured on the vertical axis. The change in the logarithm of the true cost of living from

period/region 0 to period/region t, r (∆ lnC) is given by the diagonal line. It varies with

the household's income in the base period. The slope of this diagonal line is:

∆b(pr,t) =

(
pfr,t
pnr,t

)βf

−

(
pf0
pn0

)βf

=

(
pfr,0
pnr,0

)βf 

(

(1 + Πf
r,t)

(1 + Πn
r,t)

)βf

− 1


 . (18)

Food is a necessity, so βf < 0. Thus, if the relative price of food is lower in region/period

r, t than in region/period 0, then ∆b(pr,t) > 0 and the diagonal line slopes up (as in panels

(a) and (b)). If the relative price of food is higher in period/region r, t than in period/region 0

then ∆b(pr,t) < 0 and the diagonal line slopes down (as in panel (c)). Whatever the slope,

the diagonal line for ∆ lnC always passes through the intersection of the vertical line at

lnxh,0 = α0 and the horizontal line at 4 lnPr,t. This is because the Hamilton method

estimates the change in the cost of living at lnxh,0 = α0.

The decomposition above can be seen at the vertical line at lnxh,0 = lnxCPI . The dif-

ference between ∆ lnC and ∆ lnP is the part due to non-homotheticity (∆b(pr,t)(lnx
CPI−

9Note that Hamilton's assumption that E varies only with time can only be approximately correct as
the two components of E vary with both time and region.
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α0)). In panel (a), this is positive, but less than ∆ lnPr,t − lnCPIr,t. The remaining gap

between ∆ lnC and lnCPI is then CPI bias (the extent to which the CPI mismeasures

the true cost of living increase for the CPI household), and this is also positive. In Panel

(b), the di�erence between ∆ lnC and ∆ lnP (due to non-homotheticity) is positive and

exceeds ∆ lnPr,t − lnCPIr,t. This implies that the actual CPI bias must be negative, as

indicated in the �gure. In Panel (c), the di�erence between ∆ lnC and ∆ lnP (due to

non-homotheticity) is negative, so that actual CPI bias is greater than ∆ lnPr,t− lnCPIr,t.

Note that this does not depend only on the slope, as can be seen by comparing Panel (c)

and Panel (d). Panel (d) shows an expenditure ∆ lnC function the same slope as in Panel

(c) but with α0 above lnxCPI . In this case the di�erence between ∆ lnC and ∆ lnP (non-

homotheticity) is positive but less than ∆ lnPr,t − lnCPIr,t, so that CPI bias is positive

but less than what the Hamilton Method would estimate. Of course, with the same slope, if

α0 were su�ciently large (far to the right) the e�ect of non-homotheticity at lnxCPI would

exceed ∆ lnPr,t − lnCPIr,t, and CPI bias would be negative.

To quantify true CPI bias we need to empirically implement this decomposition of

∆ lnPr,t − lnCPIr,t = ln(1 + Et) into the part due to non-homotheticity and true CPI

bias. This means calculating

∆b(pr,t)(lnx
CPI − α0) =

(
pfr,0
pnr,0

)βf 

(

(1 + Πf
r,t)

(1 + Πn
r,t)

)βf

− 1


 (lnxCPI − α0), (19)

where βf is the slope of the Engel curve and easily estimated. The calculation of lnxCPI

was discussed above. Thus for a given region, r, expression (19) contains two unobservable

quantities: α0 and the base period price ratio
pfr,0
pnr,0

. Note that in the base region
pfr,0
pnr,0

= 1.

But the choice of base period is an arbitrary normalization of prices. We can re-normalize

prices so that, essentially, each region is the base region in turn. This requires an adjustment

to α0 (because α0 is the logarithm of the cost of base utility when prices are 1), but this

is straight forward.10 This means that if α0 could be identi�ed, then the decomposition of

∆ lnPr,t − lnCPIr,t = ln(1 + Et) into the part due non-homotheticity and true CPI bias

10Appendix A describes the calculations.
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Figure 4: Four possible cases
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Note : The �gure displays four possible cases. In each panel, the logarithm of base period nominal

income is on the horizontal axis and the CPI, changes in Pt, and changes in the true cost of living (all in

logarithms) are measured on the vertical axis. The change in the logarithm of the true cost of living from

period/region t, r to period/region 0 (0,0) is given by the diagonal line. In panels (a) and (b) the relative

price of food is lower in region/period t, r than in region/period 0 and the diagonal line slopes up. In

panel (a) the Hamilton method reports a positive CPI bias and the slope of the diagonal line is such that

the Hamilton method overestimates the CPI bias (the TEC bias is lower than what the Hamilton method

reports). In panel (b) the Hamilton method also reports a positive bias and the slope is such that the

TEC bias is negative. In panel (c) and (d) the relative price of food is higher in region/period t, r than in

region/period 0 and the diagonal line slopes down. The Hamilton method reports a negative CPI bias, in

panel (c) the Hamilton method underestimates the negative bias in CPI whereas in panel (d) the Hamilton

method overestimates the negative CPI bias.
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could be quanti�ed. We take up identi�cation of α0 in the next section, but �rst consider

the implications of non-homotheticity for volume measures based on Engel curve shifts.

3.4 Volume measures

While assessing bias in the CPI is important in its own right, the underlying motivation in

this literature, going back to Nakamura (1995), is to construct volume measures (de�ated

income or de�ated expenditure, for example). A price index Ψr,t satis�es �weak factor

reversal� if there exists an associated quantity index, Qr,t, such that the nominal uplift in

income, xr,t

x0
, is the product of those price index and quantity indices:

xr,t
x0

= Ψr,tQr,t. (20)

Rearranging gives:
xr,t
Ψr,t

= x0Qr,t, (21)

where either side of this expression is de�ated income, measured in the monetary units of

period 0.

From Equation (9) we have taken the correct price index to be the Konüs cost of living

index with reference utility level u0.

Ψr,t =
C(pr,t, u0)

C(p0, u0)
. (22)

The quantity index which is complimentary to this Konüs price index (in the sense of

satisfying Equation (20)) is the Allen quantity index with reference price vector pr,t:

Qt =
C(pr,t, ur,t)

C(pr,t, u0)
. (23)

In our calculations below we use the left-hand side of Equation (21) to calculate de�ated

income, just as de�ated income is often calculated by dividing nominal income by the CPI,

but the Allen quantity index with reference price vector pr,t (multiplied by x0) is numerically

18



identical.

In logarithms, de�ated income is then lnxt − ∆ lnC(pr,t, uh,0,r). Using Equation (13)

we have:

lnxh,r,t −∆ lnC(pr,t, uh,0,r) = lnxh,r,t −∆ lnPr,t −∆b(pr,t)(lnxh,0 − α0). (24)

Then Equation (3) gives:

lnxh,r,t −∆ lnC(pr,t, uh,0,r) = lnxh,r,t − {lnCPIr,t + ln(1 + Et)} −∆b(pr,t)(lnxh,0 − α0).

(25)

Recall that −δt
βf = ln(1+Et). Substituting this and Equation (18) and grouping terms gives:

lnxh,r,t −∆ lnC(pr,t, uh,0,r) = {lnxh,r,t − lnCPIr,t}+

{
δt
βf

}
(26)

−





(
pfr,0
pnr,0

)βf [(
1 + Πr

r,t

1 + Πn
r,t

)βf

− 1

]
(lnxh,r,0 − α0)



 .

Note that the �rst term in curly brackets on the right-hand side of Equation (26) is the

standard measure of de�ated income: nominal income adjusted by the CPI. The addition of

the second term in curly brackets,
{
δt
βf

}
, gives the de�ated income by the Hamilton method.

The third term is the TEC correction for the non-homotheticity of preferences. As Engel-

curve based methods require non-homotheticity to implement, this gives a theoretically

coherent measure of de�ated incomes based on movements in Engel curves.11 We implement

and compare all three measures in our second application below.

11Note that we have taken the Konüs cost of living index with reference utility level u0 to the be the
appropriate price index. This leads Equation (26) to depend on lnxh,r,0. With repeated cross-sectional
data sets, lnxh,r,t and lnxh,r,0 are not observed for the same household. Thus Equation (26) can only be
implemented with panel data, or at a group level. We take the latter approach in our second application
below. An alternative approach would be to take the Konüs price index with with reference utility ut,r as
the correct price index (so that an Allen index with reference price vector p0 is the implied volume measure).
Through manipulations similar to those given above, this would lead to an estimator of an extended money
metric which the literature has sometimes called �adjusted expenditure� (Pendakur, 2002; Donaldson, 1992;
King, 1983).

lnxh,r,t − ∆ lnC(pr,t, uh,t,r) = lnC(p0, U(pr,t, xh,r,t)). (27)

We eschew that approach in this paper because the Konüs cost of living index with reference utility level
u0 seems the natural comparator for price indices, such as the CPI, that employ base-period quantities
as weights. The Konüs cost of living index with reference utility level ut,r would seem a more natural
comparator for a Paasche price index.
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Finally, before turning to implementation, it is important to consider the interpretation

of de�ated incomes calculated by Equation (26), and in particular concerns raised by Angus

Deaton. Deaton has strongly criticized the Hamilton method, arguing that it is subject to

the Pollak and Wales critique (Deaton, 2016, 2010b). To clarify, suppose that the cost of a

reference level of utility depends not only on prices but also on characteristics of households

or the environment, z, so that the cost function is C(p, z, u). An equivalence scale compares

the cost of some reference level utility (for example u0) across values of z, holding prices

constant at some reference price level (for example, p0):

S1
0 =

C(u0, p0, z
1)

C(u0, p0, z0)
. (28)

In an important paper, Pollak and Wales (1979) demonstrate that S1
0 is not identi�ed from

demand data, because monotonic transformations of the utility function (the inverse of the

cost function) alter the cost-ratio (Equation(28)) without altering demands.

When the cost of a reference level of utility depends not only prices but also on char-

acteristics of households or the environment, we have to be explicit about how we de�ne a

cost-of-living index. If we de�ne it strictly to be the cost-ratio between two price vectors

holding all possible z constant,

Ψr,t =
C(pr,t, z0, u0)

C(p0, z0, u0)
, (29)

this object is identi�ed by demand data and can be recovered by the TEC method, as

shown above. The Pollak and Wales critique does not apply. However, the Pollack and

Wales critique does apply to a mixed cost-ratio, in which both p and z are changing. The

cost-ratio
C(pr,t, z1, u0)

C(p0, z0, u0)
, (30)

is not identi�ed by demand data. Of course, across time and space, as prices change, other

things also change. For example, climate change will a�ect welfare and well-being, perhaps

particularly in less developed countries. So the adjustments we would really like to make
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are of the type given by Equation (30). Deaton's reference to Pollak and Wales reminds

us that we cannot, at least not without di�erent kinds of data or very strong assumptions.

The implication is that we should be very cautious about interpreting the de�ated incomes

developed in this subsection as welfare measures. It is exactly for this reason that we

employ the term de�ated income, rather than the more common �real� income. Of course,

this caution applies equally whether we de�ate income by the CPI, by a price index obtained

from the Hamilton method or the TEC method, or by some other price index derived from

demands.

4 Identi�cation

4.1 The Problem

The TEC method requires knowledge of the parameter α0. This parameter would in princi-

ple be identi�ed if price levels were perfectly observed, but is not identi�ed given data like

that used by Hamilton. To see this, �rst rewrite the two good demand system:

wh,r,t = αf + γff (lnpfr,t − ln pnr,t) + βf lnxh,r,t − βf lnPr,t, (31)

lnPr,t = α0 +αf ln pfr,t + (1−αf ) ln pnr,t +
γff
2

(−2 ln pfr,t ln pnr,t + (ln pfr,t)
2 + (ln pnr,t)

2). (32)

Using Equation (21) to eliminate Pt from the food share Equation (20), expressing the share

as a function of nominal income and additional price variables, and then grouping terms

yields:

wh,r,t =
{
αf − βfα0

}
+
{
γff − βfαf

}
ln pfr,t − {γff + βf (1− αf )} ln pnr,t + βf lnxh,r,t

− βfγff

2

{
−2 ln pfr,t ln pnr,t + (ln pfr,t)

2 + (ln pnr,t)
2
}
. (33)

Note that α0 is not identi�ed from income variation alone but is in principle, identi�ed

from the non-linearity in price responses in this expanded form of the share equation.12

12First, βf is identi�ed by the nominal log income term and γff is identi�ed by the square of the log price

21



However, the Hamilton method is motivated by the observation that prices are not

perfectly observed, and the goal is to estimate changes in the cost of living using limited

data. Recall from Section 2.1 that there are two unobservables: base period price levels,

and the error in observed in�ation rates. The Hamilton method proceeds by capturing these

unobservables with, respectively, region and time dummies. However, in the expanded form

of the share equation (Equation (33)) the quadratic terms in price levels imply interactions

between the unobservables. To captures these would require a full of set of interactions

between time and region dummies. However, this would leave no variation in observed

in�ation rates with which to estimate the parameters of the equation. Consequently α0 is

not identi�ed by this approach.

To see this, recall from Section 2.1 that Hamilton assumes the following error structure:

ln pkr,t = ln(1 + Πk
r,t) + ln pkr,0 + ln(1 + Ekt ), (34)

where Πk
r,t is reported good speci�c in�ation. Substituting this structure into Equation (33)

above gives:

wh,r,t =
{
αf − βfα0

}
+
{
γff − βfαf

} [
ln(1 + Πf

r,t) + ln pfr,0 + ln(1 + Eft )
]

(35)

− {γff + βf (1− αf )}
[
ln(1 + Πn

r,t) + ln pnr,0 + ln(1 + Ent )
]

+ βf lnXh,r,t

− βfγff

2
{−2

[
ln(1 + Πf

r,t) + ln pfr,0 + ln(1 + Eft )
] [

ln(1 + Πn
r,t) + ln pnr,0 + ln(1 + Ent )

]

+
[
ln(1 + Πf

r,t) + ln pfr,0 + ln(1 + Eft )
]2

+
[
ln(1 + Πn

r,t) + ln pnr,0 + ln(1 + Ent )
]2}.

As in Section 2.1, base period price di�erences (ln pfr,0 and ln pnr,0) can be captured with

region dummies, and the time-speci�c errors captured by year dummies (ln(1 +Ekt )). How-

ever, in the two last lines of Equation (35), the time-speci�c errors interact with unobserved

term. Given βf and γff , αf is identi�ed from the log relative price term, and then α0 is identi�ed from the
constant (since we already know αf and βf ). Such an estimate of α0 is likely to be imprecise because its a
nonlinear function of estimated (reduced form) parameters in the share equation, and identi�cation depends
on the coe�cient on the quadratic term in prices. These in turn would not be precisely estimated unless
there was a great deal of relative price variation. For this reason, demand modelers often �x α0 even though
it is in principle identi�ed. See for example Banks et al. (1997) who set α0 just below smallest observed
value of log income in the base year. A normalization does not help us here, as the resulting decomposition
of the di�erence between the CPI and the Hamilton de�ator would then be completely arbitrary.
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regional base period prices so that time-by-region interaction dummies are required.

4.2 Solutions

There are three ways to deal with non-identi�cation of a parameter: bounding the parameter,

bringing additional data to bear, and adding additional structure to the model. We pursue

all three of these possibilities.

4.2.1 Bounds

Note that budget shares are naturally bounded between zero and one. At base period prices,

the food budget share for household h is wfh,r,0 = αf + βfuh,r,0 = αf − βfα0 + βf lnxh,r,0.

Thus to ensure that budget shares are bounded between zero and one at base utility requires

0 < αf < 1 and to ensure that budget shares are bounded between zero and one at all

observed incomes (again at base period prices) requires 0 < αf − βfα0 + βf lnxh,0 <

1 ∀xh,0 ∈
[
xmin0 , xmax0

]
where xmin0 and xmax0 are the minimum and maximum nominal

incomes observed in the data (in the base year). Combining these conditions gives lnxmin
0 +

1
βf < α0 < lnxmax

0 − 1
βf . Food is a necessity so βf is negative and these bounds are

larger than the support of household income in the base period, and so not particularly

informative. We nevertheless compute them for the Hamilton data and report them in an

empirical application below.

4.2.2 Better data

Since Hamilton conducted his study, information of regional price levels in the U.S. has

become available through the important work of Bettina Aten (Aten, 2008). With these

data, ln pfr,0 and ln pnr,0 are observed eliminating the need for regional dummies. De�ne the

measured log price level as ln p̃kr,t = ln(1 + Πk
r,t) + ln pkr,0 so that from Equation (2) we have

ln pkr,t = ln p̃kr,t + ln(1 + Ekt ). With this, and maintaining the Hamilton assumption that

ln(1 + Eft )− ln(1 + Ent ) = 0, we can derive an estimable equation of the form:
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wh,r,t =
{
αf − βfα0

}
+ βf lnxh,r,t +

{
γff − βfαf

}
ln p∗fr,t − {γff + βf (1− αf )} ln p∗nr,t

− βfγff

2

{
−2 ln p∗fr,t ln p∗nr,t +

[
ln p∗fr,t

]2
+
[
ln p∗nr,t

]2
}

(36)

− βf ln(1 + Ent ).

The terms in the �rst two lines of this array are observables. The term in the third line

of this array can be captured just by time dummies. βf is identi�ed by the nominal log

income term and γff is identi�ed by the second order terms in log prices. Given βf and

γff , αf is identi�ed from the log relative price terms, and then α0 is identi�ed from the

constant (since we already know αf and βf ). We have implemented this on Hamilton's data

augmented with Aten's regional price levels. Unfortunately, the resulting estimate of α0 has

a con�dence interval which is as large as the theoretical bounds described above. This is

because identi�cation rests on base-period regional variation in relative prices, which in this

context is not large. In other contexts, regional price level variation may be more helpful.

4.2.3 A Preference Restriction

Finally, identi�cation can be achieved in this setting by imposing restrictions on preferences.

An obvious candidate is to set γff = 0. These preferences rule out relative price e�ects on

the budget shares if we condition on Pr,t:

wfh,r,t = αf + βf ln

(
xh,r,t
Pr,t

)
. (37)

Some authors without access to regional price variation have estimated exactly this

model when implementing the Hamilton method (see Beatty and Larsen (2005) amongst

others), and researchers � including Hamilton � estimating the more general formulation

often cannot reject the restriction that γff = 0 (see Hamilton (2001a) where the coe�cient

estimate is small and insigni�cant or Costa (2001) where the e�ect is negative in one period

and positive in another.)
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Combining this restriction with the error structure in Equation (2), the expanded form of

the share equation (Equation (33)), and Hamilton's assumption that ln(1+Eft )−ln(1+Ent ) =

0, we get:

wfh,r,t =
{
αf − βfα0

}
+ βf lnxh,r,t + βfαf ln

(
1 + Πn

r,t

1 + Πf
r,t

)
− βf ln(1 + Πn

r,)− βf ln(1 + Ent )

−
[
βfαf ln pfr,0 + βf (1− αf ) ln pnr,0

]
, (38)

wfh,r,t =
{
αf − βfα0

}
+βf ln

(
xh,r,t

1 + Πn
r,t

)
+βfαf ln

(
1 + Πn

r,t

1 + Πf
r,t

)
−
∑

t

δ̃tDt+
∑

r

δ̃rDr, (39)

where the coe�cients on the time dummies are δ̃t = βf ln(1 + Ent ) and the coe�cients on

the region dummies are δ̃r = −
[
βfαf ln pfr,0 + βf (1− αf ) ln pnr,0

]
.

To implement the full decomposition described in Section 3.3, we �rst estimate Equation

(6) (the speci�cation that Hamilton and subsequent literature estimate) but impose the

restriction that γff = 0,

wfh,r,t = αf + βf ln

(
xh,r,t
CPIr,t

)
− βf ln(1 + Et) +

∑

r

δrDr, (40)

= αf + βf ln

(
xh,r,t
CPIr,t

)
+
∑

t

δtDt +
∑

r

δrDr.

We recover an estimate of Et from δt = −βf ln(1 + Et). Then, we estimate Equation

(39) to get an estimate of α0 and following Section 3.3, we calculate part of Et that is due

to non-homotheticity as

∆b(pt,r)(lnx
CPI − α0) =

(
pfr,0
pnr,0

)βf 

(

(1 + Πf
r,t)

(1 + Πn
r,t)

)βf

− 1


 (lnxCPI − α0). (41)

We now implement this procedure on the Hamilton data.
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5 Applications

5.1 PSID 1974-1991 (Hamilton's data)

We �rst apply the TEC method to the same PSID data as Hamilton (2001a) to estimate

the log income level of the Hamilton household as well as calculating the bounds on that

level. This then allows us to calculate the change in cost of living for the CPI household,

and hence CPI bias, as described in the previous section.

Figure 5 displays our estimates, with the preference restriction described above, of the

log income level of the Hamilton household (that is, α0), and the CPI household, against

the full distribution of log income. The �gure pools data across states. We can treat each

state in turn as the base region and calculate α0. The two vertical lines in the �gure give the

highest and lowest values of α0 across states. We �nd that the Hamilton household is much

poorer than the CPI household, and indeed, in every state has a log income level far below

the minimum log income in the full sample. In practice, this means that this household will

be much more sensitive to price changes in food than the CPI household.

Figure 6 adds the theoretical bounds developed in Section 4.2.1, and shows that the range

of log income levels that the Hamilton household could represent is very wide. That the log

income level of the Hamilton household can be outside the observed log income distribution

(as we �nd for Hamilton's data) and indeed potentially very far below or above the observed

log income distribution (as the bounds illustrate), has important implications. In response

to a very early version of this paper (Beatty and Crossley, 2012), Nakamura et al. (2016)

propose to check the robustness of Engel Curve-based in�ation estimates (computed using

the Hamilton method) by calculating exact price indices for di�erent parts of the observed

income distribution. They employ Divisia indices from Feenstra and Reinsdorf (2000) which

are exact for the Almost Ideal Demand System (for one particular path of prices). These

indices require only data on initial and �nal period expenditure shares and prices for the

relevant group. Nakamura et al. (2016) argue that while in�ation rates so calculated are

di�erent over di�erent income groups in China, the di�erences are small. This is a very

elegant way of assessing slope of the change in cost of living (the line labeled ∆ lnC in
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Figure 5: Hamilton and CPI households
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Note : The �gure shows the distribution of income in the PSID sample, the income of the CPI household,

and the income of the Hamilton household (lowest and highest states).

Figure 4). However, this procedure is only informative about the slope of this line, and not

its location. If the log income level of the Hamilton household is far below, or far above,

the log income level of the CPI household, then even a modest slope can lead to signi�cant

di�erences between the Hamilton household and the CPI household in the change in cost

of living. This means that calculations such as those reported by Nakamura, Steinsson and

Liu cannot rule out non-homotheticity as an important component of the di�erence between

Engel Curve-based in�ation estimates and other estimates. The role of non-homotheticity

can only be assessed with information about both the slope of the change in cost of living and

the location (in log-income space) of the Hamilton household (again see Figure 4). The slope

of the change in cost of living depends on movements in relative prices and the slope of the

food Engel curve and it is fairly straightforward to calculate it directly or to approximate

it using methods such as those employed by Nakamura et al. (2016). Information about

location (in log-income space) of the Hamilton household is more di�cult to obtain, but is

equally important to assessing the implications of non-homotheticity.
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Figure 6: Bounds
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Note : The �gures show the bounds on α0, the income of the Hamilton household (for the medium state),

and the income of the CPI household.

Figure 7: Relative Prices & Non-homotheticity (1974�1991)
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Note : The Figure charts the evolution of the relative price of food to non-food goods, over the period

studied by Hamilton (solid line). The di�erence in the change in log cost-of-living for the CPI household

and the change in the log cost of living of the Hamilton Household is given by the dashed line.
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The solid line in Figure 7 charts the evolution of the relative price of food (to non-food

goods) over the period studied by Hamilton. In this time period, food prices fell relative

to non-food prices, so that rich households experienced larger cost-of-living increases than

poor households. Together with the fact that the log income level of the Hamilton household

is far below the log income level of the CPI household, this implies that the true change

in cost-of-living was smaller for the Hamilton household than for the CPI household. The

excess in the change in cost-of-living for the CPI household over the change in the cost of

living of the Hamilton household is given by the dashed line in Figure 7. This di�erence in

true cost-of-living changes in turn implies that the di�erence between the change in cost-of-

living for the Hamilton household and the CPI overstates the bias in the CPI as a measure

of the change in cost-of-living experienced by the CPI household. Hence, the scenario that

turns out to be relevant for these data and this period is captured by Panel (a) in Figure 4.

Our TEC estimates of CPI bias are presented in right-hand side column of Table 1 . Our

replication of Hamilton's original estimates are given to the left of these for comparison.13

As we remove the di�erence between the change in cost-of-living for the CPI household and

the change in the cost of living of the Hamilton household, the TEC estimates of cumulative

CPI bias are smaller than Hamilton's. By the end of the period the TEC method reveals

a cumulative CPI bias of 5 percentage points lower than Hamilton's: Nevertheless, after

correcting for non-homotheticity, we continue to �nd a signi�cant upward bias in the CPI

in this period, with cumulative bias over the 15 years of 23 percentage points.

5.2 CE Data 1990-2014

In a second empirical application we consider the years 1990-2014. This period is interesting

not only because it brings us up to date, but also because after Boskin et al. (1996) the

BLS made a number of improvements to the CPI (see also Gordon (2006)). These included

the use of a geometric means formula to account for lower level substitution, expanding

the use of hedonic models to account for quality change, and introducing a procedure to

13The appropriate comparison is to his 25-SMSA sample estimates. Our numbers di�er very slightly, due
to subsequent revisions to the PSID
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Table 1: Comparing CPI Bias computed according to Hamilton and TEC Methods

Year Hamilton TEC
1974 - -
1975 0.050 0.049
1976 0.122 0.112
1977 0.106 0.096
1978 0.133 0.131
1979 0.167 0.166
1980 0.212 0.196
1981 0.199 0.177
1982 0.220 0.189
1983 0.240 0.204
1984 0.280 0.238
1985 0.257 0.250
1986 0.257 0.209
1987 0.266 0.220
1990 0.280 0.238
1991 0.277 0.230

Note: The table shows the cumulative bias for the Hamilton and TEC methods.The cumulative bias for the

Hamilton method is given by Et = exp[− δt

βf ] − 1 and the cumulative bias for the TEC method is given by

Bt = exp[− δt

βf + ∆b (pr,t)
(

lnxCPIh,0 − α0

)
] − 1.

introduce new goods to the index more quickly (Johnson et al., 2006). It is important to

assess the e�ect of these improvements and the TEC method provides a line of evidence on

this question.

For these years, we switch from the PSID to the Consumer Expenditure (CE) Survey.14

CE data are collected by the Census Bureau for the Bureau of Labor Statistics. The CE

data contain household-level information on an aggregate of non-durable consumption, food

consumption, and income (to be used as an instrument).15 We also observe employment

status and detailed demographics that can be used as controls. We follow Hamilton (2001)

and use only households that are identi�ed as �white� and with both adults older than 21.

The area identi�er for households is state of residency in addition to an identi�er for whether

or not the household lives in a SMSA. We have CPI data at SMSA level and assign a CPI to

14More recent waves of the PSID are not well suited to this exercise as the PSID is now biennial and
income and expenditure questions refer to di�erent years

15More precisely the CE contains data at the level of the consumer-unit. See the Appendices for more
detail.
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each household in the following manner. We drop households that do not live in a SMSA.

If a state has no SMSA for which we have a CPI, we drop it. If we have one SMSA CPI

for a state, we assign it to the state. If we have more than one SMSA CPI for a state we

use the average. As some SMSA span more than one state, an SMSA is assigned (fully or

as part of an average) to every state it spans.

Moreover, the CE is a natural dataset with which to estimate Engel curves. It allows us

to use (non-durable) consumption, rather than net income, as the budget measure to which

we relate the food share. This is conceptually desirable and means that we do not need to

be concerned that Engel curves are shifting because of changes in inter-temporal allocation

(saving). It also allows us to deal with possible measurement error in the budget measure

by instrumenting for consumption with income, as is commonly done in empirical demand

estimation.16

Figure 8 shows the estimated position of the Hamilton household relative to the consump-

tion distribution for 1990. The �gure again pools data across states, and the two vertical

lines give the highest and lowest values of α0 � the Hamilton household � across states. As

in the earlier time period, the Hamilton household is very poor, and their consumption lies

well below the observed consumption distribution.

However, the years from 1990 to 2014 di�er from the period studied by Hamilton in the

movement of the relative food price. In contrast to the steady decline seen between 1974

and 1991, which favored the poor, 1990 to 2014 saw an initial decline in the relative food

price followed by a steep increase in the relative food price. This is shown in Figure 9. One

implication is that from 2006 the poor experienced a faster increase in the cost-of-living than

the rich, and the (very poor) Hamilton household had a higher cost-of-living increase than

the CPI household (or, indeed, any household in the empirical consumption distribution).

This in turn means that the TEC correction for non-homotheticity changes sign after 2006,

and the original Hamilton method understates, rather than overstates, the degree of CPI

bias in recent years.

We break the post-1990 years into two periods, 1990-1998 and 2000-2014, in order to

16The results are based on OLS estimates to maximize comparability with the PSID estimates, but IV
estimates are similar.
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Figure 8: Estimated log-income of the Hamilton household, 1990
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Note : The �gure shows the distribution of income in the CE sample, the income of the CPI household, and

the income of the Hamilton household (lowest and highest states).

Figure 9: Relative Prices (1990-2014)

-.0
8

-.0
6

-.0
4

-.0
2

0
R

el
at

iv
e 

pr
ic

e 
(fo

od
/n

on
-fo

od
)

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

Year

Note : The �gure shows the development in the relative price of food (over non-food) in the years 1990-2014.
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asses the major reforms to CPI undertaken after the Boskin report were introduced in 1999.

Figure 10 displays our results for cumulative CPI bias using both the Hamilton method

(dotted lines) and the TEC method (solid lines). There are three panels, all with the same

vertical scale. For comparison purposes, our PSID results for the earlier Hamilton period

are reproduced in the far left-hand panel. The middle panel displays our CE results for the

1990-1998 period (that is, after the Hamilton period but before the post-Boskin reforms to

the CPI), and the farthest-right panel gives CE results for the 2000-2014 period, after the

post-Boskin reforms.

In the period 1990-1998, we continue to �nd evidence of important bias in the CPI. As

noted above, movements in relative food price through this period were largely to the bene�t

of the poor. So, as in the original Hamilton period, the Hamilton household experienced a

smaller increase in the cost-of-living than the CPI household. The TEC method suggests

cumulative bias in the CPI of 13 percentage points over these 8 years (compared to 28

percentage points over the 15 years of the Hamilton period). Note that there is a larger

di�erence between the TEC method and the Hamilton method for these years and data.

Our correction for non-homotheticity indicates that the original Hamilton method overstates

genuine CPI bias by almost 40% by the end of this period.

Turning to the period 2000-2014, because the relative price of food falls and then rises

in period, our non-homotheticity correction changes sign part way through the period, and

the two sets of estimates do not diverge signi�cantly. But more importantly, neither set of

estimates suggests much CPI bias in this period, as is evident in the far-right panel. The

TEC method estimates a cumulative upward bias in CPI of 6 percentage points over this 15

years period. This is in sharp contrast to the two earlier, pre-Boskin periods in the middle

and left-hand panels. This suggests that the improvements made to the CPI in the late

1990s may have been e�ective. At a minimum, food Engel curves no longer seem to be

shifting much over time.

Finally, as noted Section 3.4, the underlying motivation in much of this literature is

to construct volume measures of de�ated income or consumption measures. We conclude

this application by using Equation (26) to calculate and compare alternative measures of
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Figure 10: Cumulative CPI Bias Across Three Periods: Hamilton and TEC methods
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Note : The �gure displays the cumulative bias for the Hamilton method and the TEC method. The

cumulative bias for the Hamilton method is given by Et = exp[− δt

βf ] − 1 and the cumulative bias for the

TEC method is given by Bt = exp[− δt

βf + ∆b (pr,t)
(

lnxCPIh,0 − α0

)
] − 1.
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de�ated consumption for the periods 1990-1998 and 1999-2014.

These calculations of genuine CPI bias are based on the idea that if we have the right

de�ator for the Hamilton household (∆ lnP ), the location of the Hamilton household in

log-income (or log-consumption) space (α0), and the slope of the cost-of-living function, we

can calculate the true change in the cost-of-living at the log-income or (log-consumption)

level of the CPI household. But of course the calculation can be made for any income (or

consumption) level. Put di�erently, we have shown that the assumptions typically made

to use the Hamilton method are su�cient to recover changes in the cost of living right

across the income (or consumption) distribution. This means we can study how in�ation

di�ers between rich and poor, or apply Equation (26) to study how de�ated income (or

consumption) has evolved at di�erent points in the relevant distribution. Here we consider

three households with the mean consumption of the �rst, third and �fth quintile of the

consumption distribution. We then calculate (using Equation (26)) alternative paths of

de�ated consumption for these households from 1990 to 1998, and from 1999 to 2014. To

compare growth, we normalize each path to 100 in either 1990 or 1999.

The results are displayed in Figure 11. The top row shows results for 1990-1998 with

panels for the lowest, middle and highest quintiles of the consumption distribution as we

move from left to right. The bottom row shows results for 1999-2014, again with panels

for the lowest, middle and highest quintiles of the consumption distribution arranged from

left to right. In each panel, non-durable consumption de�ated by the CPI is given by the

darker solid line. Non-durable consumption de�ated by the CPI corrected for the bias as

estimated by the Hamilton method is given by the short-dashed line. Finally, non-durable

consumption de�ated by the TEC measured cost of living is given with by the long-dashed

line.

Starting with the 1990-1998 period, consumption de�ated by the CPI fell substantially

for the lowest quintile. By the same measure, the middle and top quintiles experienced falls

in non-durable consumption through the middle of the decade but recovered their initial

position by the end of the decade. Using alternative de�ators leads to a quite di�erent story.

If consumption is de�ated by the CPI corrected according to the Hamilton method, the
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lowest quintile experienced modest economic progress through the 1990s, while the middle

and top quintiles appear to have experienced strong non-durable consumption growth. The

TEC method reveals that part of the correction that the Hamilton method makes to the

CPI is the spurious result of di�erences in the consumption basket of the fairly a�uent

CPI household and extremely poor Hamilton household. When we use the TEC method

to calculate the correct cost-of-living change for each household, we see that the economic

progress of each quintile is substantially understated by consumption de�ated by the CPI,

but substantially overstated by consumption de�ated by the CPI corrected according to

the Hamilton method. The middle and top quintiles of the consumption distribution have

experienced more economic progress than the bottom quintile, but that progress was more

modest than the Hamilton method would suggest. At the same time, the bottom quintile

did not experience the consumption losses that the uncorrected CPI would suggest.

In contrast to the 1990s, during the 1999-2014 period, shown in the bottom row of Figure

11, the three measures of de�ated-consumption are quite similar. This a consequence of two

things. First, the disappearance of bias in the CPI as a measure of the cost-of-living increase

in the CPI household, as noted above. Second, over this period the in�ation experienced by

the CPI-household is not very di�erent to that experienced by poorer households over this

period, because the relative price of food both rose and fell. Together, these facts mean that

for the 1999-2014, the CPI did a reasonable job of capturing changes in the cost of living

for all quintiles.17

6 Summary and Conclusions

The Hamilton method as proposed and often used confounds genuine CPI bias with dif-

ferences in consumption baskets across the income distribution. We have argued that, as

the Hamilton method requires non-homotheticity to implement, non-homotheticity must be

17In this analysis our focus is on the denominator of the de�ated consumption measure, and hence across
the three measures (de�ated by CPI, Hamilton and TEC.) Comparisons across quintiles and time will also,
of course, re�ect the numerator (nominal consumption), and here there are important issues regarding the
changing representativness of the CE data across the income distribution and over time. Those issues are
beyond the scope of this paper but have been much discusssed elsehwere. See Aguiar and Bils (2015) and
the further references therein.
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accounted for in interpreting the movement in Engel curves over time or space. We have

demonstrated how to do this by developing a method that disentangles genuine price index

bias from di�erences in consumption baskets across the income distribution. In this way,

the Hamilton method can be made internally consistent.

For the data and period that Hamilton studies, the TEC method leads to smaller, but

still important, estimates of cumulative bias in the CPI. When we extend the analysis to

more recent periods, we have two interesting �ndings. First, between 1990 and 1998, we

continue to �nd evidence of CPI bias. But in this period, the di�erence between the TEC

de�ator and the Hamilton de�ator is larger. Our correction for non-homotheticity indicates

that the original Hamilton method overstates genuine CPI bias by almost 40% by the end

of this period. Second, we �nd little evidence of CPI bias for the period 2000-2014. We

speculate that this is due to improvements to the CPI undertaken by the BLS in 1999, after

the Boskin Commission report.

These �ndings have important implications for the study of growth in de�ated household

income or consumption. For example, Meyer and Sullivan (2009, 2011) argue that o�cial

poverty statistics in the U.S. understate the progress that has been made on eliminating

poverty over time. While their calculations di�er from the o�cial statistics in a number

of ways, one key factor is that they reduce growth in the CPI by one percent per year,

citing the complementary evidence from the Boskin Commission and from Hamilton (2001a).

Our analysis suggest this is a reasonable thing to do for the period originally studied by

Hamilton. But in the 1990s the TEC method suggests a growth in de�ated consumption

that, while signi�cantly above what the CPI would imply, is signi�cantly below what the

original Hamilton method would imply. This is true right across the income distribution.

And for the post-2000 period, we �nd no systematic evidence of the CPI bias, so that there

is no evidence from Engel curves against using income de�ated by the CPI to measure

household resources.
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Appendix A: Re-normalizing Prices

The calculation of the non-homotheticity bias is done for the reference region. However, we can choose any

of the R regions to make the reference price vector. To calculate the CPI bias at every region speci�c price

vector, we do not have to re-estimate R times because we can work out quickly from the one set of estimates

what the estimates would be if we left out a di�erent region dummy.

If we leave out a region dummy, all that changes is the constant. This in turn changes the TEC estimate

of α0. This makes sense because α0 is the log cost of zero utility when prices are 1. If we rede�ne which

region's prices are one (equivalently: rede�ne quantities) then we change α0.

Our �long form� is

wfh,r,t =
{
αf − βfα1

0

}
+ βf ln

(
xh,r,t

1+Πn
r,t

)
+ βfαf ln

(
1+Πn

r,t

1+Πf
r,t

)
−
∑T
t=2 δ̃

tDt +
∑R
r=2 δ̃

rDr,

with reduced form

wfh,r,t = A1 + Zr,tθ +
∑R
r=2 δ̃

rDr,

where A1 is the constant and Zr,tθ contains the income, relative price and time terms. Note that we

are now indexing the constant and αr0 by the normalization (by which region is the omitted region, or

equivalently, which region is the reference region and has prices set to 1 in the base period).

Note that α1
0 = −A1−αr

βf .

The intercept if we left out region r instead would just be

Ar = A1 + δ̃r.

So αr0 = −Ar−αr

βf = −A1+δ̃r−αr

βf = −αf−βfα1
0+δ̃r−αr

βf = α1
0 − δ̃r

βf .

So the procedure would be as follows:

1. Estimate the long form as before leaving out the Region 1 dummy and use the ratio of in�ation rates to

do the bias/non-homotheticity calculation for that region: ∆b(p1,t))(lnx
CPI−α1

0) =

[(
(1+Πf

1,t)

(1+Πn
1,t)

)βf

− 1

]
(lnxCPI−

α1
0).

2. Then do the calculation for each of other regions, again using just the in�ation rates (so that each time

we are re-normalizing prices to be one in that region in the base period) but noting that renormalization

of prices means we have to adjust α0 for each region:

∆b(pr,t))(lnx
CPI − αr0) =

( (1 + Πf
r,t)

(1 + Πn
r,t)

)βf

− 1

 (lnxCPI − αr0)

=

( (1 + Πf
r,t)

(1 + Πn
r,t)

)βf

− 1

 (lnxCPI − α1
0 +

δ̃r

βf
).
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3. We then average over the bias from the di�erent regions. Note that structurally

δr = βfαf ln pfr,0 + βf (1 − αf ) ln pnr,0,

so that:

αr0 = α1
0 − (αf ln pfr,0 + βf (1 − αf ) ln pnr,0).

4. Finally, to see why this makes sense, note that the identifying assumption is that γk,l = 0 so that

ln a(pr,t) = α0 +
∑
k=f,n

αk ln pkr,t,

where α0 is the value of the price index when prices are one. If we renormalize prices we have to adjust

α0 by
∑
k=f,n αk ln pkr,t.
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Appendix B: Data and Estimates

PSID 1974-1991 (Hamilton's data)

In our �rst application we apply the TEC method to the Panel Study of Income Dynamics (PSID) data

studied in Hamilton (2001). While Hamilton's original data set is no longer available, there is su�cient

information in Hamilton (2001) to recreate the his data from raw PSID �les. However, revisions to the

underlying PSID data with subsequent releases mean that there are very minor di�erences between our data

set and Hamilton's original data, particularly with regards to geography.

In creating our PSID data set for analysis we follow Hamilton's sample selection rules. In particular,

we set aside the poverty sample in the PSID and then select white, two-adult families with any number of

children (including zero), with both adults aged 21 or older. We delete families that report a change in

household composition since the previous year, and those receiving food stamps or AFDC. We also delete

families with food shares greater than 80% or less than 2%, those with missing tax information, and those

with net income less than $150 or with top-coded income. Note that in the PSID income refers to the

previous year, so for each family-year observation we take the one-year-ahead value of the income variable.

We use the CPI Urban Consumers (Old Series) for all MSAs used by Hamilton. From the Bureau of

Labor Statistics (BLS), we obtained the per city All Items CPI (SA0) and the per city Food-At-Home price

index (SA111). Note that the BLS does not report All Items Less Food (SA0L1) at the MSA level. To

create this series, we use the relative importance �les provided by BLS to back this series out from the All

Item and Food series. Note that the relative importance �les are missing for 1978, 1979, and 1980 and so

we interpolate the weights by city for these years.

In estimating Engel curves, we again follow Hamilton exactly. We take the share of food at home in

net income as our dependent variable, net income as our income measure, and we include the ratio of the

Food-At-Home CPI to the All Items Less Food CPI as our relative price. Additional controls are: age of

the husband, age of the wife, education of the husband, education of the wife, hours worked by the husband,

hours worked by the wife, the number of children, share of income spent on food away from home, and �nally

measures of positive and negative income growth (equal to the change in year over year income yt − yt−1,

times indicator variables for positive and negative changes). Appendix Tables 1 and 2 correspond to Tables

2 and 3 in Hamilton (2001). Note here that we are not imposing the preference restriction that use to

identify α0 in the TEC method, so as to match Hamilton precisely. These estimates underlay cumulative

bias estimates using the Hamilton method presented in Table 1 of the paper.
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Table 1: PSID Main Regression Results

Variable Coe�cient Std. Error

Constant 0.9789 0.0138
Age of Husband 0.0005 0.0001
Age of Wife 0.0005 0.0001
Number of Children 0.0219 0.0006
County Unemployment -0.0001 0.0003
Husband's Annual Hours 0.0037 0.0008
Wife's Annual Hours -0.0026 0.0007
Husband's Education -0.0011 0.0003
Wife's Education -0.0002 0.0003
ln(Income) -0.0919 0.0015
ln(Relative Food Price) 0.0181 0.0201
Income Growth + 7.01e-07 1.34e-07
Income Growth - -8.40e-07 1.02e-07
Food Share at Resaturant 0.1400 0.0199

R2 0.5545
N 7937

Table 2: PSID Year and SMSA Dummies

Year
Coe�cient
(Std. Err.)

Cumulative
bias estimate

SMSA Coe�cient(Std. Err.)

1975 -0.0047 (0.0033) 0.050 New York 0.0270 (0.0038)
1976 -0.0119 (0.0034) 0.122 Miami 0.0180 (0.0050)
1977 -0.0103 (0.0035) 0.106 Los Angeles 0.0118 (0.0050)
1978 -0.0131 (0.0032) 0.133 Bu�alo 0.0131 (0.0091)
1979 -0.0168 (0.0033) 0.167 San Francisco 0.0096 (0.0044)
1980 -0.0218 (0.0036) 0.212 Portland, OR 0.0083 (0.0068)
1981 -0.0203 (0.0039) 0.199 Chicago 0.0069 (0.0040)
1982 -0.0227 (0.0043) 0.220 Cincinnati -0.0178 (0.0051)
1983 -0.0251 (0.0048) 0.240 Houston 0.0055 (0.0053)
1984 -0.0302 (0.0049) 0.280 San Diego 0.0010 (0.0068)
1985 -0.0273 (0.0052) 0.257 Washington, DC 0.0056 (0.0047)
1986 -0.0273 (0.0049) 0.257 Philadelphia 0.0077 (0.0047)
1987 -0.0284 (0.0048) 0.266 Milwaukee 0.0081 (0.0077)
1988 Detroit 0.0033 (0.0040)
1989 Boston 0.0043 (0.0038)
1990 -0.0302 (0.0044) 0.280 Baltimore 0.00717 (0.0048)
1991 -0.0298 (0.0045) 0.277 Denver -0.0030 (0.0056)

Pittsburgh 0.0005 (0.0044)
Kansas City -0.0019 (0.0062)
Seattle -0.0058 (0.0045)
St. Louis -0.0078 (0.0044)
Cleveland 0.0061 (0.0050)
Dallas -0.0102 (0.0051)
Minneapolis/St. Paul -0.0130 (0.0041)
Atlanta Base
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CE Data 1990-2014

In our second empirical application we consider the years 1990-2014, and for these years we switch from the

PSID to the Consumer Expenditure (CE) Survey.

The CE data are collected by the Census Bureau for the BLS. The CE comprises two distinct surveys

(with di�erent samples): an annual diary survey and a quarterly interview survey. For a general descriptions

of the data see Bee et al (2015) and Bureau of Labor Statistics (2011). We use data from the interview

survey, which Bee et al (2015) argue is the more reliable source, particularly for distributional analyses.

The CE interview survey is a rotating panel and each consumer unit (roughly, a family) participates

in up to �ve quarterly interviews. However, the �rst interview is a bounding interview and data from this

interview are not publicly available. We use data from the 2nd quarterly interview for each consumer unit.

Focusing on 2nd quarter avoids issues of attrition.

From the CE data we use consumer-unit level data on food spending, a measure of aggregate non-durable

consumption spending, and income. Neither the interview survey nor the diary survey collects spending on

all items, so our measure of aggregate non-durable consumption spending omits several small items (see Bee

et all (2015) for further details). We also use data on employment status and detailed demographics as

regression controls.

For the CE application in this paper we follow the selection rules that Hamilton employed for PSID

closely, though some of those rules are either not relevant or not possible to apply to the CE. As with the

PSID we select two adult households (with any number of children) that are identi�ed as �white� and with

both adults older than 21. We also once again delete families with food shares greater than 80% or less than

2% and those with net income less than $150.

We also follow, as far as is possible, his speci�cation of the food Engel curve. As our CE dataset does

not have a panel structure, we are unable to include the negative and positive income growth controls that

Hamilton includes (and we include) for the PSID.

The area identi�er for consumer units is the state of residency. In addition, the data contain an identi�er

for whether or not the household lives in a SMSA. As CPI data are available for SMSAs, we base our

estimation on the households that live in SMASs, and drop consumer units that do not live in a SMSA.

If a state has no SMSA for which we have a CPI for all years, we drop that state. If we have one SMSA

CPI for a state, we assign it to that state. If we have more than one SMSA CPI for a state we use the

average. As some SMSAs span more than one state, an SMSA is assigned (fully or as part of an average) to

every state it spans.

Appendix Tables 3 and 4 present the full regression results for our replication of Hamilton on this CE
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Table 3: CE Main Regression Results

Variable Coe�cient Std. Error

Constant 1.250 0.010
Age of head 0.000 0.000
Sex of spouse 0.000 0.000
Number of Children 0.024 0.001
Typical hours of head per week 0.002 0.001
Wife's Annual Hours -0.006 0.001
Wife High school -0.016 0.002
Wife more than high school -0.020 0.002
Husband high school -0.006 0.002
Husband more than high school -0.008 0.002
ln(Income) -0.113 0.001
Food Share at Restaurant -0.204 0.007

R2 0.406
N 33554

sample. Note that here we are imposing the preference restriction discussed in the paper, though results

without that restriction are very similar. These estimates result from estimating the Engel curve by OLS,

but IV estimates are again quite similar. The full list of the states that we are able to include is given in

Appendix Table 4.
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Table 4: CE Year and State Dummies

Year
Coe�cient
(Std. Err.)

Cumulative
bias estimate

State Coe�cient(Std. Err.)

1991 -0.011 (0.004) 0.091 California -0.045 (0.004)
1992 -0.009 (0.004) 0.075 Colorado -0.061 (0.005)
1993 -0.018 (0.004) 0.145 Connecticut -0.058 (0.005)
1994 -0.020 (0.004) 0.159 Florida -0.051 (0.004)
1995 -0.013 (0.004) 0.107 Georgia -0.056 (0.004)
1996 -0.023 (0.004) 0.188 Hawaii -0.038 (0.014)
1997 -0.016 (0.004) 0.127 Illinois -0.061 (0.004)
1998 -0.021 (0.004) 0.168 Indiana -0.085 (0.004)
1999 -0.018 (0.004) 0.151 Kansas -0.077 (0.007)
2000 -0.017 (0.004) 0.143 Maryland -0.045 (0.005)
2001 -0.024 (0.004) 0.194 Massachusetts -0.053 (0.004)
2002 -0.019 (0.004) 0.152 Michigan -0.073 (0.004)
2003 -0.016 (0.004) 0.130 Minnesota -0.079 (0.005)
2004 -0.015 (0.004) 0.125 Missouri -0.068 (0.005)
2005 -0.021 (0.003) 0.171 New Hampshire -0.073 (0.008)
2006 -0.031 (0.004) 0.242 New Jersey -0.049 (0.004)
2007 -0.026 (0.004) 0.209 New York -0.041 (0.004)
2008 -0.020 (0.004) 0.160 Ohio -0.076 (0.004)
2009 -0.016 (0.004) 0.136 Oregon -0.074 (0.005)
2010 -0.024 (0.004) 0.193 Pennsylvania -0.079 (0.004)
2011 -0.022 (0.004) 0.174 Texas -0.075 (0.004)
2012 -0.024 (0.004) 0.193 Virginia -0.009 (0.004)
2013 -0.015 (0.004) 0.122 Washington -0.073 (0.005)
2014 -0.021 (0.004) 0.169 Wisconsin -0.081 (0.004)

Arizona Base
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