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Abstract

Gerlagh and Liski (2011) show in a model of strategic resource de-
pendence (where a seller of oil faces demand from a buyer who can
invest in the production of a substitute) that the standard predictions
of the Hotelling nonrenewable resource model are reversed: stocks de-
cline over time, but oil supply increases until the buyer switches to the
alternative. Given the considerable evidence that renewable energy
(solar energy, wind power, biofuels, etc.) exhibits significant learning-
by-doing effects, we extend their model to consider learning in the
substitute. We show that, under learning-by-doing, the Hotelling re-
sults are restored. Oil prices increase and supply declines over time.
In fact, the buyer voluntarily curbs his oil consumption to extend the
life of the depleting resource stock owned by the seller. We find that it
may be socially efficient to discard part of the oil stock, even though
oil is cheaper than the substitute.

Keywords: learning-by-doing, bilateral monopoly, Markov-perfect equi-
librium, oil reserves, renewable energy
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1 Introduction

A major area of research in the economics of nonrenewable resources such as
crude oil is the strategic relationship between a buyer and a seller. A buyer
may consider developing substitutes that reduce his dependence on the seller.
For example, a key reason given for developing domestic shale gas resources
in the United States is reduced dependence on foreign oil.1 However, sellers of
crude oil can take such behavior on the part of buyers into account when they
price resources. This strategic relationship between a buyer and a seller (or
equivalently, a group of buyers and sellers) has been the focus of important
recent studies.

In a recent paper, Gerlagh and Liski (2011) consider a setting in which the
seller of a nonrenewable resource faces demand from a buyer who has a sub-
stitute with a time-to-build delay. They show that in this simple framework,
textbook Hotelling (1931) results are reversed - the stock of the nonrenew-
able resource decreases over time but the quantity supplied increases steadily
up to the point where the buyer decides to switch to the substitute source
of energy. The seller of oil keeps increasing the supply over time in order to
compensate the buyer for the rising scarcity of the resource, thereby ensuring
that the buyer is indifferent between (a) investing in the substitute and (b)
buying oil and postponing the investment decision.

In this paper we extend the above framework of Gerlagh and Liski (hence-
forth called GL) to include learning-by-doing in the substitute. This is an
important feature of almost all infant industries - unit costs decline for a
significant period of time during the operating life of a technology. In the
case of energy, there is a large body of literature which has documented sig-
nificant cost declines in alternative energy markets such as solar, wind and

1President Barack Obama emphasized this argument in his 2013 State of the Union
address, “The natural gas boom has led to cleaner power and greater energy indepen-
dence." (See https://obamawhitehouse.archives.gov/blog/2013/02/13/president-obamas-
2013-state-union).
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biofuels, as well as in energy technologies used in earlier centuries such as
lighting.2 For example, the use of solar energy in transportation - cars and
buses running on electricity powered by solar photovoltaic cells - may be
considered an alternative to the use of crude oil. The unit cost of solar has
declined steadily with the addition of new capital stock (solar plants). As
old plants are retired or become obsolete, they are replaced by new ones; and
this brings down the unit cost of producing renewable energy.3 Other studies
have found significant learning effects in solar and wind generation (e.g., Mc-
Donald and Schrattenholzer (2001), Duke and Kammen (1999)). Estimates
show that the cost of power generation from wind energy has declined from
nearly $150/MW to about $50/MW, and is expected to decline even further
(Lantz, Hand and Wiser, 2012). Other fuels (such as biofuels) that are direct
substitutes for oil in the transportation sector have also experienced cost re-
ductions in recent years with the adoption of high-yielding varieties of corn
and more efficient methods of production and refining.4 After several years
of receiving federal subsidies for biofuels which have since been withdrawn,
the US is now the world’s largest exporter of biofuels, suggesting that some
learning may have taken place during the initial period of growth in this
industry.

The surprising result in our paper is that when the alternative energy
source exhibits significant cost reductions because of learning, the Gerlagh-
Liski results disappear. Resource prices rise and quantity declines over time,
exactly as Hotelling (1931) predicted. When oil is abundant, the equilibrium

2See Fouquet (2006) and Nordhaus (1996).
3Solar panels are subject to Swanson’s Law, similar to Moore’s Law for tran-

sistors, which suggests that the cost of photovoltaic cells needed to generate solar
power falls by 20 percent with each doubling of global manufacturing capacity. The
cost of these cells has dropped two orders of magnitude in the last 35 years, see
http://kottke.org/13/06/alternative-energy-costs-are-dropping. In California the price of
solar panels has dropped from $4/watt in 2007 to under $1/watt, according to Borenstein
(2013).

4Chen and Khanna (2012) find that processing costs for corn ethanol in the US have
declined 17 percent as production volumes increased 17-fold during the period 1983-2005.
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price of oil may lie strictly below the buyer’s reservation price for alternative
energy, generating a surplus for the buyer. When oil becomes scarce, its price
equals the true cost of the alternative energy, and there is no buyer surplus.
Moreover, if learning is significant, oil may never be used, even though it is
cheaper to extract than the substitute source of energy. These results are
robust to including a time-to-build delay in developing the substitute, along
the lines of Gerlagh-Liski.

We consider a bilateral monopoly where a buyer —or a group of buyers
who coordinate their actions– import a nonrenewable resource (say, oil) from
a seller or a group of sellers that form a cartel —imagine Western nations
buying crude oil from OPEC or natural gas from Russia. The buyer can
invest in a substitute that is costlier than oil. However, and this is the
key innovation in this paper, the unit cost of the substitute decreases with
cumulative use.

Our results on the effects of learning by doing rely on the fact that the
substitute to oil is readily available (possibly at an extremely high cost)
whenever the buyer decides to switch.5 This assumption, which differs from
Gerlagh and Liski’s assumption of a delay between the time of the decision to
switch and the time at which the substitute becomes available, is the reason
why oil supply does not increase in our model. Extraction decreases until
the oil price reaches the net cost of producing solar energy.

Section 2 develops the basic model of buyer and a s seller of a nonrenew-
able resource with learning in the substitute resource available to the buyer.
Section 3 derives the socially optimal solution for resource use and prices.
Section 4 models strategic behavior between the buyer and seller. Section 5

5We do not model the research and development process that makes the substitute
available to the buyer. Many papers have studied optimal investment in research and
development for an oil-importing country: see for example Dasgupta et al. (1983), Harris
and Vickers (1995), Bahel (2011), although not in the strategic context we examine in
this paper. Like GL, our analysis focuses on strategic considerations after the backstop
becomes available to the buyer, that is, after a successful research and development process
has been completed.
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concludes the paper. All proofs are relegated to the Appendix.

2 The Buyer-Seller Model with Learning in the

Substitute

We propose a simple model along the lines of Gerlagh and Liski (2011), but
with learning by doing in the substitute resource. The basic idea is that a
producer of oil sells to a buyer who has the option of investing in a substitute
resource which exhibits decreasing unit cost with use.

Let x and y be the quantity of oil and solar energy consumed by the buyer
at any given time. We hide the time subscript whenever it is convenient
and the context is clear. Then the total energy consumed is given by q =

x + y. Through appropriate normalization, we choose units such that one
unit of solar panel is energy equivalent to a barrel of oil. This choice of
units is convenient and does not affect our results. Let the buyer’s surplus
associated with the consumption of energy be given by u(q), which is assumed
to be increasing and concave in q. We make the usual assumption that
limq→0 u

′(0) = ∞, which guarantees that the buyer will always consume a
positive quantity of energy.6

First consider the static relationship between the buyer and seller in the
simple case when the buyer only consumes oil. When faced with an oil price
p, the buyer chooses the quantity of oil consumed by maximizing his utility
given by u(x) − px which yields the necessary condition p = u′(x). Let us
write the inverse of this (static) demand as x(p) = u−1(p). The corresponding
profit function of the seller can then be written as π(x) = (u′(x)− c)x, where
c is the seller’s unit cost of extraction for oil, assumed to be constant.7 Let
pm denote the seller’s monopoly price which satisfies the necessary condition

6This assumption enables us to focus only on the interior solution.
7Let us assume that the seller’s profit function π(x) is strictly concave and continuously

differentiable in x.
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[u′′(x)x+ u′(x)] = c.
We now extend this model to include the dynamic interaction when the

buyer has the option to invest in a substitute, which we call solar energy for
convenience.8 Let p(t) be the price set by the seller at date t. When oil is the
buyer’s only source of energy, his instantaneous surplus at time t is u(x)−px;
and the seller’s profit is π = px − cx. Let the unit cost of solar energy be
defined by k(Y ), where Y denotes the cumulative stock of solar panels that
have been produced previously. That is, Y (t) = Y (0)+

∫ t
0
y(τ)dτ , where Y (0)

is the initial endowment of solar panels. The higher the number of panels
produced, the lower the unit cost of production of solar energy, k′(Y ) < 0.
Let us assume that these cost reductions decline with the number of panels,
k”(Y ) > 0. That is, learning reduces costs but at a declining rate. The
stock of solar panels is a proxy for the know-how accumulated by the buyer
in producing solar energy. We abstract from considering market structure
in the solar technology and treat it as a competitive industry, as has been
done by GL and others in the literature. By normalizing the initial stock of
solar panels Y (0) to zero, we can write k(0) > c, i.e., the initial unit cost of
solar exceeds the cost of oil.9 If solar energy were cheaper throughout, oil
would never be used. Suppose that the lower bound on the unit cost of solar
energy is higher than the unit cost of oil, i.e., limY→∞ k(Y ) = k. Thus by
assumption, c < k < k(0). Later, we discuss the case where the limit cost of
solar energy is lower than the cost of oil, that is, k < c < k(0).

If solar energy and oil are consumed simultaneously, the buyer’s surplus is
given by u(q)−px−k(Y )y. The seller’s profit can be written as π = px−cx.
Let Π(X0, Y0) denote the discounted sum of the seller’s profit beginning from

8This may be any resource that is a substitute for oil in its primary use in transporta-
tion, such as biofuels from corn or liquefied shale gas that is used to generate electricity
for automobiles.

9A typical specification for this learning process may be written as k(Y ) = θe−δY + ω,
where the parameters θ, ω, δ are positive and satisfy k(0) = θ+ω > c. Here the difference
between the unit cost and ω (its limit as Y goes to infinity) decreases at the constant rate
δ > 0.
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the initial date t0, given the endowment of oil (X0) and solar panels (Y0).
Then we can write

Π(X0, Y0) =

∫ ∞
t0

e−rtπ(t)dt, (1)

where r is the discount rate, taken as given and assumed to be equal for both
buyer and seller. In an analogous fashion, the intertemporal utility of the
buyer, denoted by W (X0, Y0), can be written as

W (X0, Y0) =

∫ ∞
t0

e−rt[u(q)− px− k(Y )y]dt. (2)

We write w(Y0) ≡ W (0, Y0) to refer to the buyer’s intertemporal utility after
oil is exhausted.

3 Socially efficient use of oil and solar energy

Assume that the consumer owns the stock of crude oil. Then he can choose
the optimal energy mix (of oil and solar energy) that maximizes aggregate
utility as follows:

W (X0, Y0) = max
{x,y}

∫ ∞
0

e−rt [u(x+ y)− cx− k(Y )y] dt (3)

subject to

Ẋ(t) = −x (with X0 ≥ 0) (4)

Ẏ (t) = y (with Y0 ≥ 0) (5)

x, y ≥ 0 and lim
t→∞

X(t) ≥ 0. (6)

Conditions (4) and (5) suggest that the stock of crude oil X(t) is depleted
as oil is consumed and the stock of solar panels Y (t) increases when more
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panels are produced. We assume no depreciation of solar panels: adding
a constant depreciation rate would add another term to (5) and make the
model more complicated to solve without really adding any new insights on
the main question we pose in this paper. We can thus write the corresponding
current value Hamiltonian as

H = u(x+ y)− cx− k(Y )y − λx+ βy, (7)

where λ and β are the respective shadow prices attached to the stock of oil
and solar panels, respectively. The necessary conditions for maximization
are:

u′(x+ y) ≤ c+ λ (= if x > 0); (8)

u′(x+ y) ≤ k(Y )− β (= if y > 0); (9)

λ̇(t) = rλ; (10)

β̇(t) = rβ + k′(Y )y; (11)

lim
t→∞

λ(t)X(t) = 0 and lim
t→∞

β(t) = 0. (12)

From (8), the marginal value of oil equals the sum of its unit cost and
scarcity rent. Equation (9) states that the marginal value of solar energy
equals its unit cost minus a subsidy given by β that represents the benefit
from learning by doing. Condition (10) gives the usual Hotelling rule - the
scarcity rent of oil increases at the rate of discount. Let us define λ0 as the
shadow price of oil at time t0. Then λ(t) = λ0e

rt. Note that the subsidy on
solar energy may increase or decrease over time depending on the net effect
of the two terms in (11) since the second term is negative. Let β0 be the value
of the subsidy β at time t0. Condition (12) essentially says that aggregate
oil extraction cannot exceed the initial stock of oil X0: if oil is exhausted
we will have lim

t→∞
X(t) = 0; otherwise, lim

t→∞
λ(t) = 0 . Since the Hamiltonian
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is concave in its arguments (x, y,X, Y, t), the above necessary conditions are
also sufficient for optimality. We can now state the following result.

Proposition 1 The socially optimal solution implies that (a) if initially, oil
is cheaper than solar energy by less than some positive β0 (where k(Y0)− c <
β0) then oil will never be extracted - only solar energy will be used from the
beginning; (b) otherwise, oil is used exclusively for some time until a complete
transition to solar energy.

Proof : See Appendix

Note that the price of crude oil must go up over time due to scarcity.
However, solar energy prices go down because of learning by doing. Because
the price of crude oil is increasing and the price of solar is decreasing, there
is no simultaneous use of the two resources over any (non-degenerate) time
interval. Therefore, only two outcomes are possible. When solar is cheap
relative to oil and the cost reductions from using solar are high (reflected in
a high value of the subsidy β), the social planner will use only solar from
the beginning, and no oil will ever be used. This may happen even if oil is
initially cheaper than solar energy.

If oil is cheap or abundant, or if the learning effect of solar is relatively
small, we first use oil and then switch at some point in time to solar energy.
Note that aggregate energy consumption decreases when the fossil fuel is
supplied and increases when solar panels are deployed. In the limit, the price
of energy approaches the limiting marginal cost of solar energy k. Energy
prices first rise and then fall when oil is used, and consumption follows a
U-shaped path as shown in Figure 4, where oil is used until time T , after
which it is replaced by solar energy.10

10As shown in the Appendix, the solution is uniquely determined by the following system
of two equations with two unknowns, λ and T :{

(β + λ0)erT = k(0)− c∫ T
0
x̃(c+ λ0e

rt)dt = X0.
(13)
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Figure 1: Aggregate energy consumption falls and then rises. Only oil is
consumed until time T̄ when it is replaced by solar energy.

4 Strategic Interaction between Buyer and Seller

We can now study the differential game between the buyer and seller. We
treat time as continuous and consider small intervals of the form [t, t + dt].
We let the two agents make their respective decisions at the beginning of each
interval and commit to those choices for the entire period of length dt. Until
oil is exhausted, the sequence of decision-making in each interval [t, t+ dt] is
as follows:

(1) Given the stocks of oil X(t) and solar panels Y (t), the seller chooses
a unit price p(t) for oil.11

(2) The buyer then chooses x(t) and y(t), her respective consumption
bundles of oil and solar panels.

Recall that after exhaustion of the oil stock, the buyer relies only on
solar energy and her discounted utility is given by w(Y0) ≡ W (0, Y0). In
what follows, we determine the Markov perfect equilibrium of the dynamic

11The price-setting approach we adopt is similar to that of GL who consider a quantity-
setting seller. With learning by doing, it is convenient to let the seller set a price and the
buyer choose quantity.
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bilateral monopoly described above when dt approaches zero.
Conversely, we assume that the buyer finds it economical to use some

crude oil and not leave the entire stock in the ground, so that strategic inter-
action can occur. That is, c < k(Y0) − β, oil is cheaper than the subsidized
price of solar energy. This assumption is reasonable, as many studies have
concluded that the cost of fossil fuels may be lower than the true social cost
of cleaner energy sources such as solar or wind energy (e.g., see Borenstein,
2012).

Let p(t) be the price offered to the buyer by the seller. At any date t0
the buyer’s problem can be written as:

W (X0, Y0) = max
{x,y}

∫ ∞
t0

e−r(t−t0)[u(x+ y)− p(X, Y )x− k(Y )y]dt (14)

subject to (4) and (5).
In (14), unlike in the socially optimal case, the buyer acquires barrels of

oil at the seller’s unit price p(t), which may not be the same as the unit cost
of oil c. Thus the structure of the problem remains the same and the results
are qualitatively the same as stated in Proposition 1, except that c is now
replaced by the buyer’s price p(t). The buyer will buy oil if it is cheaper than
the cost of solar net of the benefits from learning, in other words, if p < c−α.
We can now state the following:

Proposition 2 The buyer’s Markov perfect strategy is as follows: (a) when
oil is abundant (higher than some threshold stock X̄), the buyer is “myopic"
- he consumes oil if and only if k(Y )−α ≥ p (and zero otherwise); (b) when
oil is scarce - lower than the threshold stock X̄, the buyer imposes a tax µ on
his own consumption and consumes a lower quantity of oil, i.e., x = x(p+µ)

iff k(Y )− α ≥ p, and none otherwise.

Proof : See Appendix
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What is surprising here is that when the stock of oil goes below this
threshold level, the buyer self-imposes a "tax" on oil to curb his own con-
sumption. He does not behave like a myopic buyer. This is because by doing
so, he enjoys a positive surplus as long as the oil stock remains above a given
level. This is due to the fact that the seller prices oil at lower than the net
cost of solar energy as long as the oil stock remains relatively large, as will
become more transparent below when we discuss the seller’s strategy.

The seller’s objective is to maximize the discounted sum of his instan-
taneous profits π = (p − c)x, given the optimal purchase strategy of the
buyer:

Π(X(0), Y (0))) = max
p(t)

∫ ∞
t0

e−r(t−t0) (p− c)xdt (15)

subject to:

Ẋ(t) = −x

p ≤ k(Y )− α.

We need the last condition because the buyer does not buy oil if the net
price of solar energy is lower than the oil price, i.e., when p > k(Y ) − α.
Recall that pm denotes the (static) monopoly price of the seller. We can now
describe the seller’s pricing strategy as follows:

Lemma 1 At any instant, the seller’s optimal price p(X, Y ) satisfies:{
p(X, Y ) ∈ [pm, k(Y )− α], if pm ≤ k(Y )− α;

p(X, Y ) = k(Y )− α, otherwise.

Note that the seller will never price above the net marginal cost (which
is unit cost net of subsidy or k(Y ) − α) at which the buyer can produce
the substitute because then the buyer will not use oil. If the seller’s static
monopoly price is lower than the net cost of the substitute to the buyer,
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then the closer is the seller’s price to the monopoly price, the higher are his
profits. However, the seller may want to price higher than the monopoly
price, simply to spread his profits over a longer time period.

The seller’s complete strategy can be summarized by the following:12

Proposition 3 The Markov perfect pricing strategy of the seller is: (a)
When the monopoly price is lower than the net cost of solar energy. Then if
oil is abundant, the seller charges a price strictly below the net price of solar
energy to the buyer. If oil is scarce (the stock falls below a threshold level),
the seller charges a price exactly equal to the net cost of solar energy; (b)
when the monopoly price is higher than the net cost of solar energy, the price
charged equals the net price of solar energy.

Intuitively, if oil was not scarce at all (when the stock is infinite), the seller
would charge the monopoly price pm to the buyer at each date, provided pm is
lower than the reservation price of the buyer. Since the stock is actually finite,
the seller will optimally charge a price that is higher than pm.13 Furthermore,
due to discounting, the seller adopts an increasing price path, so that he can
earn higher profits in earlier periods. This explains why the oil price is lower
than the buyer’s reservation price while oil is still relatively abundant.

Thus, if oil is abundant and the monopoly price is lower than the net
cost of solar energy, the buyer gets a surplus and reduces his consumption
of oil, to ensure that the stock of oil lasts for as long as possible. This is
different from Gerlagh and Liski where the buyer gets no surplus and does
not worry about depletion. Figure 4 shows the evolution of the oil price and
consumption over time.

12We show in the Appendix that the Markov perfect equilibrium described by Propo-
sitions 2 and 3 is unique if we impose the following conditions: (a) the pricing strategy
of the seller p(X,Y ) is a non-decreasing function of the oil stock X for any fixed stock of
solar panels Y ; (b) the purchasing strategy of the buyer x(X,Y, p) is a decreasing function
of the price p, for any given X and Y .

13Indeed, a price lower than pm would not only reduce current profits, but also leave
the seller with a lower stock for the future.
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Figure 2: Oil price rises over time, stays below the net cost of solar energy
and approaches the net price of solar at time T.

The buyer initially prices oil below the reservation price of the seller (net
price of the clean substitute) until the threshold stock is reached. After
that, the price stays constant at the level of the substitute. The higher the
initial stock of oil, the longer is the first phase of low oil prices. Note that
in the unlikely case that the monopoly price is higher than the net cost of
the substitute, the price will always equal the substitute price, and the first
stage disappears. When the stock of oil is depleted, the buyer switches to
solar energy and consumption increases to its asymptotic limit.

If learning has a significant effect on costs, then the subsidy β is likely to
be large, so that k(0) − β < c < k(0), the buyer adopts solar energy from
the outset, even if its unit cost is higher than the unit cost of oil.
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5 Concluding Remarks

Our analysis incorporates learning-by-doing into the strategic resource de-
pendence model. We have considered a nonrenewable resource bilateral
monopoly where the buyer has the option to adopt a substitute whose marginal
cost decreases as cumulative use increases. The results exhibit interesting
qualitative differences in comparison with the findings of Gerlagh and Liski
(2011). In particular, we show that the oil stock may be discarded even with
a substitute that is much costlier than oil.

We find that the Markov-perfect outcome exhibits a stage where the seller
prices oil below the reservation price and the buyer curbs oil consumption
in order to enjoy a positive surplus for as long as possible. Indeed, the
buyer conserves oil because, on the equilibrium path, the seller sets the price
equal to the buyer’s reservation price as soon as the stock falls below a given
threshold. As far as we know, this “non-myopic” behavior of the buyer (who is
concerned with the depletion of the stock) is new to the literature on strategic
resource dependence. In the Markov perfect equilibria of Gerlagh and Liski
(2011), the buyer is essentially indifferent between (a) investing immediately
and (b) consuming oil while postponing the adoption of the substitute.

For simplicity and comparison purposes,14 we have considered a unit cost
for the substitute that only changes with the aggregate stock of supply of
panels, but is constant at any given date. For example, the marginal cost
does not vary with the number of panels produced instantaneously. As a
consequence, the buyer consumes either oil or solar energy (but not both) at
any given time. We leave for future research the case of a learning-by-doing
process with a nonlinear cost function for the substitute production.15 We
believe such a framework would yield much of the same results as our present

14Note that Gerlagh and Liski (2011) assume a constant unit cost for the substitute.
15Chakravorty, Leach and Moreaux (2012) examine such a learning process with non-

linear costs. They show that the combined effects of learning-by-doing and environmental
regulation may lead to alternate periods of rising and falling oil prices.
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paper, while allowing the simultaneous use of the different sources of energy.
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A Proofs

In this Appendix, we provide the proofs of the results stated in the text,
as well as some additional results in Propositions 4-5. Propositions 1-3 are
stated in non-technical language in the main text, and here we provide a
technical version before offering a proof. Proposition 1 relates to the socially
efficient extraction path. Propositions 2-3 relate to the description of the
Markov equilibrium between buyer and seller. Finally, Propositions 4-5 give
an analytical description of the socially efficient path.

The following lemma states that the buyer will no longer purchase oil
once solar energy is used. This result is useful in proving Proposition 1,
which describes the socially efficient use of oil and solar energy.

Lemma 2 The solution (x(t), y(t))t≥0 to (3) is such that: for any t1 ≥ 0,

y(t1) > 0⇒ (x(t) = 0, for all t > t1).

Proof : Suppose that y(t1) > 0 for some t1 ≥ 0. Then the necessary condition
(9) implies that

u′(x(t1) + y(t1)) = k(Y (t1))− β(t1)ert1 .

Combining this with (8), one can write

k(Y (t1))− β(t1)ert1 = u′(x(t1) + y(t1)) ≤ c+ λ(t1)ert1 .

In other words, at date t = t1, the current value of the full marginal cost
of solar energy , k(Y ) − β(t)ert, is no higher than that of oil consumption,
c + λ(t)ert. Note in addition that, since λ̇ot = 0 [by condition (10)], the full
marginal cost of oil (c+ λ(t)ert) is nondecreasing over time.

In order to conclude the proof, it is thus sufficient to show that k(Y ) −
β(t)ert is decreasing (over time) on the optimal path. To that end, let us
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observe that:

d [k(Y )− β(t)ert]

dt
= k′(Y )Ẏ − β̇(t)ert − rβ(t)ert

= k′(Y )y − β̇(t)ert − rβ(t)ert by the law of motion (5).

Using the necessary condition (10), we can write k′(Y )y = β̇(t)ert. This,
plugged into the above time derivative, gives:16

d [k(Y )− β(t)ert]

dt
= β̇(t)ert − β̇(t)ert − rβ(t)ert = −rβ(t)ert < 0.

This shows that k(Y )− β(t)ert < c+ λ(t)ert for any t > t1. That is to say, if
solar energy is used at date t1, oil will not be used from t1 onwards (due to
its higher full marginal cost).�

The following proposition is the technical version of Proposition 1 in the
text. It describes the characteristics of efficient oil and solar power usage.
Proposition 1 (technical version)
On the socially optimal path, we have the following.
(i) Given k(·) —the learning process, there exists a unique threshold α ∈
(0, k(0)) such that: a. if k(0) − c < α then x(t) = 0, for any t ≥ 0; and b.
x(0) > 0 if k(0)− c > α. (ii) There exists a date T ≥ 0 such that y(t) = 0,
y(t) > 0, for t ≥ T ; and y(t) > 0, x(t) = 0, for t > T .

Proof : By (10), we have λ(t) = λ̄ ≥ 0, for any t ≥ 0. Let then β(0) ≡ α

be the optimal shadow value of solar energy at date t = 0. At t = 0, the
respective full marginal costs for solar energy and oil are k(0)−α and c+ λ̄.

(i).a If k(0)− c < α, then we have k(0) − α < c + λ̄. In this case,
combining the conditions (9) and (10), shows that qst=0 > 0 and qot=0 = 0.
This, given the result of Lemma 2, proves the first claim (a).

16Notice that the shadow value β(t) is positive (and decreasing) by condition (10), since
k′(Y ) < 0.
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(i).b If instead k(0)− c > α: by way of contradiction, suppose that
qot=0 = 0 —this means that, k(0) − α < c + λ̄ and qst=0 > 0. It then fol-
lows from Lemma 2 that qot = 0, ∀t > 0 (thus, oil is never used and X = X0

for any t). In addition, the transversality condition (lim
∞
λ(t)X0 = 0) implies

that λ(t)=0. Hence, k(0)−α > c+λ̄ = c, which is a contradiction. Therefore,
we must have qot=0 > 0 if k(0)− c > α.

(ii) If k(0)− c < α then it suffices to take T = 0 [by (i).a]. Otherwise, it
follows from the case (i).b above that k(0) − α > c + λ̄ and qot=0 > 0 (while
qst=0 = 0). For any T satisfying qst = 0 ∀t ∈ [0, T ], we get from the (5) that
Y = 0 ∀t ∈ [0, T ]. It then follows from (10) that β(t) = λst=0 = α ∀t ∈ [0, T ].

Thus, as long as qst = 0, the full marginal cost of solar energy (in current
value) is k(0) − αert and decreases over time. On the other hand, the full
marginal cost of oil is given by c+λ̄ert and increases over time. It is easy to see
that c+ λ̄ert = k(0)−αert for t = T = ln

(
k(0)−c
λ̄+α

)
; and c+ λ̄ert > k(0)−αert

for t > T . Therefore, solar energy is used after T (due to its lower full
marginal cost) and, from Lemma 2, oil is not consumed from T on (that is,
qoT+t′ = 0).�

A.1 Proposition 2

We now give a technical and explicit version of Proposition 2 in the text,
which dscribes the buyer’s Markov strategy.
Proposition 2 (technical)
There exists a Markov-perfect strategy for the buyer; it is characterized by
two functions X̃ ≡ X̃(Y ) and µ ≡ µ(X, Y ) s.t.

a- whenever X ≤ X̃: qt = x(t) = x̃(pt) if k(Y ) − α ≥ pt (with x(t) = 0

otherwise);

b- whenever X > X̃: qt = x(t) = x̃(pt+µ) if k(Y )−α ≥ pt (with x(t) = 0

otherwise).
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Proof : For the buyer, the cost of acquiring a barrel of oil at any date t is pt,
and the full marginal cost of the substitute is k(Y )−α. It is straightforward
to see from Section 3 that the buyer optimally consumes solar energy (that
is, x(t) = 0) at any time t such that pt > k(Y )− α.

In the case where pt ≤ k(Y )− α, we have y(t) = 0 and x(t) > 0 instead.
It will be shown in the proof of Proposition 3 that (in the Markov-perfect
equilibrium) the seller prices above the buyer’s reservation price k(Y ) − α

whenever the oil stock X is above some threshold X̃(Y ). And for any X ≤
X̃(Y ), the seller will choose pt = p̄ = k(Y ) − α. Thus, the oil stock has no
value for the buyer as soon as X ≤ X̃(Y ) —since he is charged the same
price from then on; and he behaves in a myopic way by consuming x̃(pt). On
the other hand, the buyer receives a positive surplus [above the reservation
payoff ū ≡ u (x̃(p̄))] as long as X > X̃(Y ). Thus, given the Markov strategy
of the seller, p(X), the buyer has to solve the following problem at any date
t [s.t. the oil stock is X > X̃(Y )]:

max
{qτ}t≤τ≤T̄

∫ T̄

t

e−rτ [u(qτ )− p(Xτ )qτ − ū] dτ (16)

subject to:
Ẋτ = −qτ and XT̄ = X̃(Y ).

Writing the Hamiltonian and the optimality conditions for this problem,
it is easy to see that the buyer’s optimal oil consumption at date t assumes
the form x = x̃(pt + µ), where pt ≡ p(X) and µ ≡ µ(X, Y ) is the oil scarcity
value [associated with the problem (16)] at date τ = t.�

A.2 Lemma 3

The following lemma is a useful step in describing the seller’s equilibrium
strategy. It gives the range of the oil price.
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Lemma 3 At any date t such that k(Y ) − α > c, the seller’s optimal price
p(X, Y ) satisfies:{

p(X, Y ) ∈ [pm, k(Y )− α], if pm ≤ k(Y )− α;

p(X, Y ) = k(Y )− α, otherwise.

Proof : At any date t, a price pt > k(Y ) − α would trigger the buyer’s use
of the substitute (instead of oil) at date t, that is to say, y > 0 = x. This
would have two negative effects on the seller: (a) his profit at date t would
be zero; (b) his continuation value W (X, Y ) would decrease due to a higher
L after t.17 It is clearly better for the seller to choose

pt ≤ k(Y )− α (17)

and make positive profits at date t while preventing the know-how of the
buyer (L) from increasing. Therefore, in a Markov-perfect equilibrium, we
will always have pt ≤ k(Y )−α. Recall that pm is the optimal price of the seller
for the (static) demand function D(p). One can see that the instantaneous
profit πt = (pt − c)D(pt) is increasing in pt as long as pt < pm. Let us now
discuss the following two cases.
• Suppose that pm ≤ k(Y ) − α at date t. By choosing a price pt < pm, the
seller earns lower profits at t (than with a price of pm) and is left with a
lower oil stock due to higher sales at t; this is clearly not optimal. Thus, in
a Markov-perfect equilibrium, we have pm ≤ pt ≤ k(Y )− α.
• If pm > k(Y )− α, choosing pt < k(Y )− α would give lower instantaneous
profits while depleting the stock faster (which is not optimal). This shows
that we must have pt ≥ k(Y ) − α. Recalling (17) then gives the desired
result: pt = k(Y )− α.

17Note that L increases because y > 0 and Ẏ = y. Furthermore, recall that the cost
k(L) of producing solar energy is a decreasing function of L.
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A.3 Proposition 3

We are now set to fully describe the seller’s strategy. The following is the
technical version of Proposition 3 in the text
Proposition 3 (technical)
There exists a Markov-perfect pricing strategy of the seller s.t.
(i). p(X, Y ) = k(Y )− α if pm ≥ k(Y )− α ≥ c;
(ii). if instead pm < k(Y )− α then

a- p(X, Y ) = k(Y )− α for X ≤ X̃;

b- p(X, Y ) = u′(π′−1(er(t−T1)π′(x̄)))− µ for X > X̃, where T1 ≡ T1(Y,X).

Proof : We show that the pricing strategy described in Proposition 3 is the
seller’s best response against the buyer’s strategy of Proposition 2 (and vice-
versa).

We first show that, against any strategy of the buyer which can be written
in the form q̃o(X, Y, pt) = x̃(pt + µ) [where µ ≡ µ(X, Y )],18 the seller’s best
response involves a threshold X̃ such that: pt = p̄ ≡ k(Y )−α if X < X̃; and
pt < p̄ otherwise. Indeed, for any such strategy of the buyer, the problem
(15) of the seller at date t0 can be written as:19

max
T1,{x}t∈[t0,T1]

∫ T1

t0

e−r(t−t0) (pt − c− µ)xdt+ e−r(T1−t0)

[
1− e−r

XT1
x̄

]
(p̄− c)x̄/r (18)

subject to:

Ẋ = −x (with Xt0 = X0)

x(T1) = x̄ ≡ x̃(k(Yt0)− α).

18Note that the corresponding inverse demand function is pt = u′(x)−µ when the seller
chooses oil extraction x.

19Note that we are implicitly using Lemma 3 to write the second term of the objective
(18): when the price reaches p̄ at date T1, it can no longer increase and will remain
constant at p̄ for the time period [T, T + XT

x̄ ]. Equivalently, oil supply increases up until
T and then remains constant at x̄ during the period x̄ during the period [T1, T1 +

XT1

x̄ ].
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Recalling the function π and letting µ̃ ≡ e−r(t−t0)µ, one can rewrite the
objective:

max
T1,{x}t∈[t0,T1]

∫ T1

t0

[
e−r(t−t0)π(x)− µ̃x

]
dt+ e−r(T1−t0)

[
1− e−r

XT1
x̄

]
π(x̄)/r︸ ︷︷ ︸

B(XT1
)

.

Thus, the Hamiltonian is: H = e−r(t−t0)π(x)−[µ̃+ λ]x, where λ is the seller’s
scarcity value for the oil stock. Using Pontryagin’s maximum principle, we
obtain the optimality conditions:

π′(x) = er(t−t0) [µ̃+ λ] (19)

λ̇ =
∂µ̃

∂X
x (20)

Ẋ = − x (21)

H(T1) =−
∂
[
e−rT1B(XT1)

]
∂T1

(22)

λ(T1) =−
∂
[
e−rT1B(XT1)

]
∂X

(23)

Note that (22) is the transversality condition relating to the free terminal
time T1, whereas (23) pertains to the free terminal stock XT1 . We combine
these conditions to find X̃ ≡ XT1 .

First, observe from (20) that ˙̃µ+ λ̇ = ˙̃µ+ ∂µ̃
∂X
x = ∂µ̃

∂X
Ẋ+ ∂µ̃

∂X
x = 0 —given

that Ẋ = −x by (21). That is to say, µ̃+ λ is constant over time. Plugging
this into (22) then gives:

Next, note from (22) that:

e−r(T1−t0)π(x(T1))− [µ̃+ λ]x(T1) = e−r(T1−t0)

[
1− e−r

XT1
x̄

]
π(x̄).
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Recalling that x(T1) = x̄ and simplifying, we obtain

[µ̃+ λ] x̄ = e−r(T1−t0)e−r
XT1
x̄ π(x̄). (24)

Taking t = T1 in (19), one can write µ̃ + λ = e−r(T1−t0)π′(x̄). Plugging this
last equality into (24), we get e−r

XT1
x̄ = x̄π′(x̄)

π(x̄)
. It thus follows that

X̃ ≡ XT1 =
x̄

r
ln

(
π(x̄)

x̄π′(x̄)

)
.

Note that X̃ is a function of Yt0 —just as x̄— but does not depend on the
initial stock, Xt0 . Also remark that the stock XT1 above always exists given
our assumption that π is concave (i.e., π(x̄) > x̄π′(x̄)). From what precedes,
we conclude that pt = k(Y )− α whenever X ≤ X̃ (that is, T1 = 0).

In the case where X > X̃, it follows that T1 > 0. Recalling from above
that µ̃+ λ = e−r(T1−t0)π′(x̄), one can use (19) to characterize x:

π′(x) = er(t−t0)e−r(T1−t0)π′(x̄) = er(t−T1)π′(x̄).

It follows that x = π′−1(er(t−T1 )π′(x̄)). As stated by Proposition 3, we thus
have pt = u′(x) − µ = u′(er(t−T1)π′(x̄)) − µ, where T1 is determined by the
condition:20

∫ T1

0

π′−1(er(t−T1)π′(x̄))︸ ︷︷ ︸
x

dt = X0 − X̃ (25)

and µ is determined by the combination of (19) and the transversality con-
dition (23).�

20Equation (25) states the fact that the oil stock is eventually exhausted.
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A.4 Proposition 4

The following shows that consumption of oil (solar power) is weakly mono-
tonic.

Proposition 4 The socially optimal path for oil consumption, (x(t))t≥0, is
nonincreasing over time; whereas that of solar energy consumption, (y(t))t≥0,
is nondecreasing. In addition, we have lim

t→∞
y(t) = x̄, where x̄ = x̃ (k).

Proof : The desired result is easily obtained by combining Proposition 1-(ii)
and the facts that the full marginal cost of oil (c+ λ̄ert) is increasing whereas
that of solar energy (k(0) − βte

rt) is decreasing —as shown in the proof
of Lemma 2. Hence, solar energy consumption increases after date T and,
given that lim

t→∞
Y = +∞, condition (9) —with equality— gives lim

t→∞
qst =

x̃
(

lim
L→∞

k(L)
)
≡ x̄.�

A.5 Proposition 5

Accounting for all possible cases (depending on the values of our parameters),
the followoing Proposition 5, which is not stated in the text, gives an explicit
description of the socially efficient path for oil and solar power usage.

Let us denote by Y ∗t the unique solution to the second-order differential
equation (SODE)

u′′(Ẏt)Ÿt − r
[
u′(Ẏt)− cs(Yt)

]
= 0 (26)

that satisfies the initial and terminal conditions: Y[t=0] = 0 and lim
t→∞

Yt = +∞.
In addition, for any t ≥ 0, let

β∗t ≡ u′′(Ẏ ∗t )Ÿ ∗t . (27)

Note that (β∗t )t≥0 is uniquely determined by r, u(.), cs(.), which are primitives
of the model. The upcoming result fully characterizes the socially efficient
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path.

Proposition 5 The socially efficient path can be expressed (depending on
the relevant case) as follows.
(i) If k(0)− c < α: T = 0; for any t ≥ 0, x(t) = 0 and qt = y(t) =

x̃ (k(Y ∗t )− β∗t ert), where Y ∗t and β∗t are respectively given by (26) and (27).
(ii) If k(0)− c ≥ α: then there exists a threshold S̄ such that

a- whenever X0 ≥ S̄, we have T = 1
r

ln
(
k(0)−c
α

)
and

{
qt = x(t) = x̃(c), for t ≤ T

qt = y(t) = x̃
(
k(Y ∗t−T )− β∗t−T ert

)
for t > T ;

b- whenever X0 < S̄, we have T = T and{
qt = x(t) = x̃(c+ λ̄ert), for t ≤ T

qt = y(t) = x̃
(
k(Y ∗t−T )− β∗t−T ert

)
for t > T,

where (λ̄, T ) is the solution to (13).

Proof : Let us first determine the optimal solar energy consumption path
after the switch to solar energy at date T .21 The necessary conditions (9)-
(11) come down to:

u′(y) = k(Y )− βtert (28)

β̇t = e−rtk′(Y )y (29)

Ẏ = y (30)

Combining (28)-(30), we obtain the following second-order differential equa-
tion:

u′′(Ẏ )Ÿt − r
[
u′(Ẏ )− k(Y )

]
= 0. (31)

21It is known from Proposition 1 that oil is no longer consumed after the switch.
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Let then Y ∗t be the unique solution to (31) that satisfies the initial and
terminal conditions Y ∗[t=0] = 0 and lim

t→∞
Y ∗t = +∞.22 The optimal shadow

value of solar energy at date t ≥ T is then

β∗t = u′′(Ẏ )Ÿt, (32)

as specified in (27). Recall that we defined α as the shadow value of solar
energy at t = 0 —and as long as t ≤ T , due to (10). It follows from what
precedes that:

βt =

{
α, if t ≤ T

β∗t−T , if t > T,
(33)

where β∗t is given by (32). It is easy to see that βt is nonincreasing and
continuous. We now discuss the different cases of Proposition 5.
(i) Suppose that k(0)− c < α: then the desired result follows from the com-
bination of Proposition 1-(i), (28) and (33) [where T = 0].
(ii) If k(0)− c > α: then it follows from Proposition 1-(i) that qot > 0 (oil
is used at the outset). As seen in the proof of Proposition 1, the switch to
solar energy is made by the latest at T ∗ = ln

(
k(0)−c
α

)
,23 regardless of the

remaining oil stock XT ∗ .
a− In the subcase where X0 ≥ S̄ ≡ x̃(c)T ∗, the optimal oil consumption

up until T ∗ is clearly constant and given by qot = x̃(c) (that is, oil is not scarce
and λ̄ = 0). Combining (28) and (33) then gives y(t) = x̃

(
k(Y ∗t−T )− β∗t−T ert

)
for t > T .

b− When X0 < S̄ ≡ x̃(c)T ∗, the constant oil consumption path above is
not feasible (i.e., oil is scarce and λ̄ > 0). Oil consumption is then given by
qot = x̃(c+ λ̄ert), for any t ≤ T . And the optimal date T of the switch to solar
energy is such that the k(0)− αerT = c− λ̄erT , that is to say, the (current)

22Note that Y ∗t is uniquely determined given the primitives of the model: u, k, r.
23This is because λ̄ ≥ 0.
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full marginal costs are equal. It also follows from (12) that XT = 0, which
gives:

∫ T
0
x̃ (c+ λert) dt = X0.

Combining the two conditions above, one gets the system introduced in
(13):{

(α + λ)erT = k(0)− c [i.e., T (λ) = ln ((k(0)− c)/(α + λ))]∫ T
0
x̃ (c+ λert) dt = X0.

Using the intermediate value theorem, it is easy to see that there exists a
unique λ̄ that solves

∫ T (λ)

0
x̃ (c+ λert) dt = X0. Letting T̄ ≡ T (λ̄), we can

then write: {
qt = x(t) = x̃(c+ λ̄ert), for t ≤ T̄

qt = y(t) = x̃
(
k(Y ∗

t−T̄ )− β∗
t−T̄ e

rt
)

for t > T̄ .�
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