
Do behavioral nudges interact with prevailing economic
incentives? Pairing experimental and quasi-experimental

evidence from water consumption∗

Daniel A. Brent1 and Casey J. Wichman2

1Pennsylvania State University
2University of Chicago, Resources for the Future

January 7, 2020

Abstract

Social comparisons are a popular behavioral nudge to change behavior, partially be-
cause raising prices can be politically difficult. In many settings, nudges may interact
with prevailing prices, potentially crowding out intrinsic motivation to conserve or by
increasing the salience of prices. We investigate the interaction of prices and nudges
for water conservation in two experiments in neighboring utilities. First, we layer ran-
domized behavioral treatments on top of variation in price driven by arbitrary lot-size
thresholds that assign marginal prices to customers exogenously. Second, we explore
whether behavioral treatments affect consumers’ price sensitivity. We find no consistent
evidence that social comparisons are more effective at inducing conservation at higher
prices or that they increase consumers’ price sensitivity. Ultimately, we find little empir-
ical support that consumers respond to behavioral treatments due to private economic
benefits.
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1 Introduction

Behavioral interventions are widespread policy options for altering consumption choices.
Governments, policymakers, and industry around the world now look to behavioral eco-
nomics to manage private and social costs. Behavioral economics has inspired policies tar-
geting a wide range of outcomes including tax evasion (Hallsworth et al., 2017), charitable
donations (Croson and Shang, 2008; Shang and Croson, 2009), education (Levitt et al., 2016),
healthy eating (Hanks et al., 2012; List and Samek, 2015), and exercise (Royer et al., 2015).
These interventions have motivated, and in some cases are the output, of government-run
"nudge units" such as the United Kingdom’s Behavioural Insights Team.

Nowhere have behavioral nudges been more pervasive than for managing energy and
water consumption (e.g., Allcott, 2011; Ferraro et al., 2011; Allcott and Rogers, 2014; Brent et
al., 2015; Ito et al., 2018; Byrne et al., 2018). Regulated industries, such as electricity or water
and sewer service, are limited by how much they can use price as a tool of conservation.
In the state of California, for example, water utilities cannot charge a price greater than
cost of service, effectively rendering scarcity pricing illegal.1 As a result, utilities often
rely on nonprice demand-management tools to encourage conservation. Researchers have
shown that social comparisons can be effective nonprice policies for conservation, reducing
household energy and water consumption between two and five percent (Allcott, 2011;
Ferraro and Price, 2013; Brent et al., 2015). At scale, these small reductions can generate
substantial benefits for the service provider at relatively low cost, potentially delaying or
avoiding investment in costly new power plants or water sources.

A notable feature of this literature on social comparisons is that the treatment effect
estimates are typically causal, arising from the randomized nature of program designs im-
plemented by companies such as OPower and WaterSmart Software. Reconciling these esti-
mates with models of consumer behavior, however, is less transparent. Some have claimed
that norm-based information treatments apply a moral tax to consumption of externality-
producing goods (Levitt and List, 2007; Ferraro and Price, 2013). Others, however, have
claimed that information treatments reduce the distortion in consumer’s perceptions of
price and quantity consumed, thus reducing informational “internalities”—or optimization
mistakes—borne by consumers (Allcott and Taubinsky, 2015; Wichman, 2017). As such,
there are competing views of whether behavioral interventions affect an individual’s intrin-
sic motivation to conserve, provide direct economic benefits to the consumer, or both.

In line with understanding the behavioral mechanism of underlying conservation be-
havior, we posit that behavioral policies may interact with prevailing market mechanisms
in an ambiguous way. Because behavioral interventions in electricity and water demand

1See, e.g., http://www.latimes.com/local/orangecounty/la-me-rates-decision-20150421-story.
html.

2

http://www.latimes.com/local/orangecounty/la-me-rates-decision-20150421-story.html
http://www.latimes.com/local/orangecounty/la-me-rates-decision-20150421-story.html


managment are always overlaid on top of contemporaneous pricing structures, there is la-
tent potential for economic incentives and nudges to interact in an ambiguous way. We
show theoretically that existing interpretations of nudge treatment effects may confound
behavioral and economic explanations if there is an economically significant interaction be-
tween prices and nudges. Within the current literature, there is virtually no evidence of
whether this interaction is meaningful. Our paper fills this gap.

We explore the impacts of a social messaging experiment and large changes in marginal
prices on water conservation behavior. Our analysis produces causal effects by design: first,
we evaluate the effects of two independent, randomized messaging experiments imple-
mented by WaterSmart Software at different points in time for neighboring water utilities
in Southern California. Second, we exploit two sources of variation that introduce price
changes at the household level. One source of price variation comes from arbitrary lot-size
thresholds within nonlinear water rate structures that we exploit in a regression discontinu-
ity design. The second source of price variation arises from the utilities’ rate-setting prac-
tices, included in an instrumental variables framework. Our methodology cleanly identifies
the separate impact of the social comparison treatment and price on consumer behavior, as
well as their joint effect.

Within our unique empirical approach, we answer two questions. First, do customers
facing different price levels respond more strongly to norm-based conservation campaigns?
We refer to this as the price-level effect. We identify the price-level effect from comparing
responsiveness to behavioral treatments for otherwise identical households on either side
of a price discontinuity introduced by arbitrary lot-size thresholds within a utility’s rate
structure. Second, do norm-based conservation campaigns increase customers’ price sensi-
tivity? We refer to this as the price-sensitivity effect. We identify the price-sensitivity effect by
estimating demand equations and observing whether our randomized behavioral treatment
significantly alters our estimate of the price elasticity. Both effects are theoretically plausible
ways in which nudges and prices interact.

Our results show no consistent evidence that social comparisons generate more conser-
vation for households facing an exogenously larger marginal price of water. Higher prices
cause small and insignificant decreases in the magnitude of the treatment effect from peer
comparisons. Additionally, we find similarly weak and inconsistent evidence of a price
sensitivity effect. Treatment induces small increases in the magnitude of the price elasticity
in some specifications, although these effects disappear in alternative specifications.

Because norm-based policies are implemented broadly for water and electricity, the pol-
icy implications of this research are vast. Allcott and Rogers (2014) and Brent et al. (2015)
both show that behavioral nudges interact with prevailing conservation policies. Recent re-
search shows that the mechanisms through which consumers respond to behavioral nudges
has important welfare implications (Allcott and Kessler, 2019; Taylor et al., 2018). Nudges
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generate unambiguous welfare gains if consumers conserve due to correcting internalities.
However, if consumers respond due to a moral tax on consumption then welfare only in-
creases if the price of the resource is below its marginal social cost. Strong interactions
between nudges and prices would indicate that consumers are at least in part responding
to increases in the private benefits from conservation, given the extensive evidence that con-
sumers in these settings do not have full information about prices (Sexton, 2015; Wichman,
2017; Brent and Ward, 2019) or are not responding according to standard neoclassical theory
(Sallee, 2014; Allcott and Wozny, 2014; Jacobsen, 2015). Therefore, although it is difficult
to directly measure the welfare benefits of behavioral interventions, we find evidence that
supports the fact that social comparisons operate as a moral tax on consumption.

There is, however, a growing body of evidence that focuses on comparing the effects
of moral and neoclassical incentives on energy and water consumption. Ito et al. (2018)
explore the effectiveness of a standard moral suasion nudge relative to dynamic electricity
pricing treatments. They find that moral suasion induces sizable effects in the short-run that
dissipate quickly relative to dynamic prices that exhibit longer-run effects. Our project is
different in that we seek to understand how the moral suasion treatment interacts with un-
derlying economic incentives. Additionally, Brandon et al. (2018) implement a randomized
OPower experiment in which personalized energy reports were sent to electricity customers
that targeted aggregate savings or peak-load savings, and measured the response of these
treatments during peak-load and non-peak load events. They find that a combination of
treatments induced a larger effect than the joint effect of each treatment in isolation or, in
other words, that treatments were complimentary. This result suggests an important role
for exploring other policy complimentarities, particularly with respect to interactions with
economic incentives because nudges can highlight the private economic benefits of conser-
vation. Additionally, West et al. (2019) show that strong fines for violating outdoor water
restrictions do not impact the behavioral response from peer comparisons. Finally, in an-
other project, List et al. (2017) show that economic incentives (via a rewards program) can
better target electricity consumption reductions from low-use, low-variance households,
who are typically less responsive to nudges. Importantly, electricity and water are often
priced using nonlinear increasing-block rate structures where the economic benefits from
conservation are positively correlated with consumption. Thus it feasible that low-use, low-
variance consumers respond to nudges differently because of different private economic
returns from conservation. This latter effect is precisely what we seek to estimate in this
paper.

Overall, we find little evidence that moral nudges interact with underlying economic
incentives. This is an important result because nearly all behavioral public policy has the
potential to interact with existing neoclassical incentives. Placed alongside the previously
mentioned literature, our study provides a clearer view of the mechanisms underlying
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responses to behavioral treatments. Behavioral nudges can be criticized for providing too
many types of information to isolate the relevant mechanism for consumer behavior, but we
fail to find convincing evidence that making economic incentives more salient is a relevant
factor for behavioral interventions. This finding sharpens our view of past and future
conservation policies because nearly all behavioral nudges for electricity and water are
layered on top of prevailing rate structures. Additionally, in situations where resource use
goes unpriced, our results suggest that behavioral treatments can still be a useful policy
instrument to govern consumer behavior in a socially advantageous way.

2 Conceptual framework

To show how nudges and incentives interact conceptually, we begin with the general frame-
work of Allcott and Kessler (2019). Consider a consumer with income y who gains utility
from the consumption of water w and numeraire good x. w generates consumption utility
of f (w; α), where α captures consumer tastes as a demand shifter. We include an inter-
nality parameter γ > 0 that affects choice but not experienced utility, such as imperfect
information, mistakes in evaluating private benefits of water consumption, or some other
behavioral bias. For our purposes, it is useful to think of γ as inattention to water con-
sumption. Consumers thus have perceived utility f̂ (w; α, γ), which we assume takes the
form γ−1 f (w; α). Thus, utility is expanded for γ > 1 and contracted for 0 < γ < 1.

Following Levitt and List (2007) and Ferraro and Price (2013), we include a “moral
utility” term, M = m − µw, which captures nonpecuinary impacts associated with con-
sumption of w. We define µ ≥ 0 as a marginal “moral tax” on consumption of w.

We summarize individual-specific parameters in the vector θ = {y, α, γ, m, µ} so that the
consumer maximizes

max
x,w

Û(θ) = x + γ−1 f (w; α) + m− µw (1)

subject to her budget constraint
y = x + pw (2)

where p ≥ 0 is the marginal price for water consumption. The consumer allocates all non-
water expenditures to the numeraire, thus satisfying her budget constraint with equality.
We focus only on interior solutions.

Standard first-order conditions govern the consumer’s choice of water consumption, w̃:

f ′(w̃; α) = γ(µ + p). (3)

Eq. 3 states that consumers will choose consumption of w̃ to equalize their marginal experi-
enced utility with the sum of perceived monetary and moral costs. Because γ introduces a
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wedge between experienced marginal utility and a consumer’s true marginal utility, choice
of w̃ is not required to be individually optimal. The framework so far is consistent with
stylized formulations in Sexton (2015) and Wichman (2017) who model price (and quantity)
misperceptions. The only difference is the inclusion of the Ferraro and Price (2013) moral
cost parameter.

We can express changes in consumption by totally differentiating Eq. 3:

f ′′(w̃; α)dw̃ = µdγ + γdµ + pdγ + γdp. (4)

Now, let the nudge be represented by changes in attention to water use (dγ) and changes
in the moral cost of consumption (dµ).2 Because the nudge does not affect the market price
of water (i.e., dp = 0), we can express the demand effect of a nudge as

dw̃ =
1

f ′′(·) [(µ + p)dγ + γdµ] . (5)

Under standard assumptions of demand (i.e., diminishing marginal utility), f ′′ is weakly
negative, which implies that the nudge will (weakly) reduce water demand in equilibrium
for γ < 1.3 Eq. 5 shows that the total effect of the nudge depends on how changes in percep-
tions interact with moral and explicit prices as well as how changes in moral costs interact
with perception. The vast majority of research to date assumes implicitly that the increased
salience of private economic benefits of conservation are negligible; in other words, these
studies interpret the effect of the nudge as if pdγ = 0. That is, the majority of experiments
focused on exploring the effects of salience or moral suasion ignore their underlying inter-
action with prices. This omission is a potentially important oversight because behavioral
interventions for water and energy use are implemented on top of prevailing prices, which
are often nonlinear and thus different for different consumers. Furthermore, many nudges
aimed at water and energy conservation, including the one analyzed in this paper, explicitly
communicate the private financial benefits of conservation.

This simplified representation of demand translates directly to our first empirical hy-
pothesis: the existence of an economically important interaction between behavioral treat-
ments and conventional pricing mechanisms. We define this effect as the price-level effect
(PLE), which measures the magnitude of dw̃ in response to the nudge that is driven by
differences in price levels. Our null price-level hypothesis posits that pdγ = 0. Evidence of
a nonzero price-level effect would lend support to the notion that consumers change con-
sumption in part due to changes salience of private economic benefits from conservation.
We test this by comparing the effect of randomized nudges for households who face exoge-

2For clarity, we assume the nudge is corrective in that it reduces information distortions, or dγ =⇒ γ→ 1.
3For γ > 1, the nudge could increase consumption if, e.g., consumers had been initially over-perceiving the

costs of consumption. This stylized result is captured empirically in Wichman (2017).
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nously different marginal prices. We describe our empirical identification of this effect in
the subsequent section.

Additionally, we explore a second, complementary approach to investigate whether
nudges affect consumer demand through neoclassical price mechanisms. Consider a change
in price, dp. Using Eq. 3, we can define the resulting price elasticity,

ε̂p =
γ

f ′′(·)
p
w̃

= γεp (6)

where εp is the neoclassical price elasticity of demand and the hat indicates “perceived”
price elasticities. This formulation leads directly into our second hypothesis. We define the
price-sensitivity effect (PSE) as the degree to which nudges affect price sensitivity. Because
social comparisons operate through both channels of µ and γ, our null price-sensitivity
hypothesis is ∂ε̂p/∂γ = 0. Evidence of a nonzero price-sensitivity effect would suggest that
consumers’ sensitivity to price is affected by the nudge, thus providing support for the idea
that consumers respond to nudges, at least in part, because of the private economic benefits
that arise from internality correction.

3 Empirical setting and strategy

3.1 Data

The data we use in the analysis are household-level water consumption records for two util-
ities in Southern California. We obtained these data through partnership with WaterSmart
Software. We refer to the larger utility in our sample as “Large Utility” and, correspond-
ingly, the smaller utility is “Small Utility.”4 These two utilities share a geographic border
and their residents form a common labor market along with other nearby municipalities.
Both utilities combine water and sewer services and also serve as the electric utility. Figure
1 shows the geographic distribution of households in the treatment and control groups in
each utility.

Large and Small Utility have different pricing structures, and the water rates have
changed over time. Large Utility has “budget-based” increasing-block rates in which con-
sumption thresholds for the marginal price blocks vary with geographic region and lot
size. This means different households will be assigned to higher marginal prices at differ-
ent levels of consumption. There are three geographic zones: low, medium, and high. The
geographic zones refer to the water requirements for irrigation based on temperature con-
ditions; the low zone has the most moderate weather and the high zone has hotter weather.
There are five lot size thresholds leading to fifteen unique sets of consumption tiers that

4As part of the confidentiality agreement we cannot disclose the names of these utilities.
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Figure 1: Water utility service area (partial), sample boundaries, and households by treat-
ment status

Note: The small utility is contained within the black border and the large utility is outside the border.
Household locations are scrambled by .001 decimal degrees to preserve anonymity.

determine marginal prices. Small Utility has a standard increasing-block rate structure.
Figure 2 displays the full water rate structure over time for both utilities.

For each household in our sample, we have consumption for the given billing period
and the relevant prices for consumption. Households receive water bills every two months.
To protect anonymity, geographic coordinates for each household were scrambled within
0.001 degrees (a maximum of approximately 365 feet), which permits us to identify the
neighborhood of the household, but not its exact address. Each account in our sample was
randomized into a treatment or control group by WaterSmart Software. All households in
each utility begin receiving HWRs at the same time (details on randomization and treatment
are described below). Households in both utilities are billed bimonthly leading to six billing
periods each year. Treatment began during the sixth billing period of 2014 in Small Utility
and during the second billing period of 2015 in Large Utility.
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Figure 2: Marginal Prices Over Time
Note: The colors depict the marginal price for different consumption tiers. The dashed lines show prices
for the Large Utility and the solid lines show marginal prices for the Small Utility. The vertical dashed and
solid lines depict the treatment start date for the Large and Small Utilities respectively.

3.2 Experimental design

WaterSmart Software (henceforth WaterSmart) is a smart-technology company that con-
tracts with water utilities to help them manage demand.5 In addition to providing analyti-
cal support to utilities, WaterSmart primarily focuses on helping utilities reduce water con-
sumption by providing consumers with additional information through customized Home
Water Reports (HWRs) (Figure 3) and an online customer account portal. WaterSmart bears
resemblance to the model of OPower for electricity customers analyzed in Allcott (2011). For
many utilities WaterSmart randomizes the assignment of households who receive HWRs in
order to evaluate the causal impact on water consumption (see, e.g., Brent et al. (2015)).
Because customers opt-in to viewing their online account, we focus here on the treatment
effect for households receiving a HWR (i.e., intent-to-treat effects).

The one-page HWR as tested has three components. The main component (in the upper
left of the figure) is a social comparison. WaterSmart estimates the household’s total water
consumption over the prior two months from utility billing records and compared that to
the consumption of “average neighbors” and “efficient neighbors.” “Neighbors" are defined
as households that have the same number of occupants and similar irrigable area across
the utility, such that the general water requirements within a peer group are comparable.

5More information is available on their website: http://www.watersmartsoftware.com/.
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“Efficient neighbors” were peers with consumption in the bottom 20%. Households with
consumption above the median of their peer group receive a “Red” normative message
(shown in Figure 3), those with consumption between the median and 20th percentile receive
a “Yellow” message, and those below the 20th percentile receive a “Green” message. (Home
Water Reports showing the latter two categories are provided in the Appendix).

The second component (across the bottom of Figure 3) is a list of three personalized rec-
ommendations for strategies to save water. Recommendations include installing low-flow
toilets and switching to native plants. Based on data available from the utility (described
more below) or on results from a baseline household survey with limited responses, Wa-
terSmart personalized these recommendations to the extent possible. For example, if a
household had no outdoor area it was not given a recommendation regarding irrigation.
The personalized recommendations provide estimates of the water savings in gallons and
in dollars, and the dollar estimates rely on the highest marginal price the household faced
last month. The third component (in the upper right of Figure 3) cycles between a variety
of messages about water conservation and utility programs.

To show that the randomization was conducted properly we graph average water use
over time across treatment groups and perform a variety of balance tests. Figure 4 shows
the average water consumption for the treatment and control groups in both utilities. The
treatment and control groups have similar consumption prior to the intervention and after
treatment the treatment groups use less water. Table 1 shows that treatment and control
groups are well balanced on a range of observables based on a variety of parametric and
non-parametric tests. Out of the 42 tests performed only three (7%) have a p-value less than
0.05 and only four (9.5%) have a p-value less than 0.1.
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Figure 3: Home Water Report
Note: This is an example of a generic “Red” Home Water Report (HWR). These households used more
than the median of their peer group.
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Table 1: Summary statistics and balance on observables

Sample Variable Treat Control Difference KS MW T
Small Utility Pre-Treatment Water 443.8 440.1 3.7 0.71 0.63 0.32
Small Utility Pre-Treatment Water (Summer) 506.1 502.3 3.8 0.42 0.96 0.38
Small Utility Pre-Treatment Water (Winter) 404.4 401.3 3.1 0.19 0.51 0.36
Small Utility Lot Size 9955.6 9641.5 314.1 0.18 0.31 0.04
Small Utility Sq. Ft. 1953.5 1954.3 -0.9 0.37 0.45 0.95
Small Utility Beds 3.0 3.0 -0.0 0.34 0.99 0.78
Small Utility Baths 2.2 2.2 0.0 0.94 0.44 0.58
Large Utility Pre-Treatment Water 609.2 609.0 0.2 0.37 0.97 0.93
Large Utility Pre-Treatment Water (Summer) 722.6 722.4 0.2 0.48 0.72 0.95
Large Utility Pre-Treatment Water (Winter) 552.9 552.8 0.1 0.31 0.76 0.96
Large Utility Lot Size 10345.6 10313.8 31.8 0.70 0.82 0.70
Large Utility Sq. Ft. 2146.9 2173.5 -26.6 0.00 0.07 0.01
Large Utility Beds 3.5 3.5 -0.0 0.42 0.97 0.68
Large Utility Baths 2.5 2.5 -0.0 0.38 0.32 0.30

Note: The table shows the average values for a variety of households characteristics for the treatment and
control groups in each utility. All the pre-treatment water variables are measured in gallons-per-day. Lot
size and sqft (indoor living space) are measured in square feet. Beds and baths are the number of bedrooms
and bathrooms. The last three columns present the p-values from test statistics. KS is the non-parametric
Kolmogorov-Smirnov equality of distributions test, MW is the non-parametric rank-order test, and T is the
two-sided t-test for difference in means.
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3.3 Quasi-experimental design

In order to identify the differential impact of HWRs for households facing different prices
we estimate a difference-in-discontinuity model (DD) that exploits a discontinuity in the
rate structure of the Large Utility. The Large Utility uses a budget-based increasing-block
rate structure in which the tier thresholds depend on the climate zone and lot size (in
square feet). There are five lot-size tiers (0-7499, 7500-10,999, 11,000-17,499, 17,500-43,559,
≥ 43,560), and households with smaller lot sizes are allocated less water before moving to
a higher pricing tier. Therefore, households that are just below the lot-size tier threshold
(e.g., 7499 sqft) on average face higher prices than households just above a tier threshold
(e.g., 7500 sqft).6 We exploit this threshold by restricting the analysis to various lot-size
bandwidths such that the households are relatively close to the lot-size thresholds.

In Figure 5, we show how the lot-size threshold introduces a discontinuous effect on
the likelihood of facing a higher marginal prices in each utility. These figures present
mean marginal (average) prices relative to lot size in 100 sqft bins. There is a distinct
jump in the expected marginal price for households just below the lot-size threshold in the
Large Utility (panel (a)), but not in the Small Utility (panel (b)). To highlight the difference
in typical marginal prices induced by the lot-size threshold we define "low" households
as those less than 1000 feet below a lot-size threshold (e.g. 6499-7499 sqft). We define
"high" households as those less than 1000 feet above a lot-size threshold (e.g., 7500-8500
sqft). The raw data show that in the Small Utility the average marginal price for low and
high lot-size households is $3.65 and $3.77 respectively—so high lot-size households on
average pay more for water because they are typically larger water consumers. In the Large
Utility the average marginal price for low and high lot-size households is $5.98 and $5.81
respectively—low lot-size households pay more for water despite the fact that they are lower
users on average. Note that although the average price difference in the Large Utility from
the lot-size threshold is only $0.20, the marginal price increase from moving to the higher
tier is more than $1. The average marginal prices reflect both the change in marginal prices
and the probability that a household moves into the higher consumption tier. Therefore,
some households will face significant marginal price increases due to the lot-size threshold
discontinuity. Because the lot-size threshold introduces a discontinuity in the probability
that a household faces a higher marginal price, we evaluate this price change in a fuzzy
regression discontinuity design.

In Figure 6, we present the price variation that we are exploiting in a different way. Here
we show the different rate structures for households in three different lot-size groups. Each

6Because this budget-based billing only occurs in the Large Utility, we also use a third difference as a robust-
ness check (in a difference-in-difference-in-discontinuity design, or DDD) to compare similar households above
and below the lot-size threshold across utility boundaries. These households below the lot-size discontinuity
will only face higher prices in the Large Utility.
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lot-size group faces the same set of marginal prices, but larger lots are allocated a larger
proportion of bi-monthly consumption at the lower marginal price. As shown, a household
with a 7400 sqft lot moves into the second price tier at 28 ccf, whereas a household with a
7500 sqft lot moves into the second price tier at 37 ccf. Further, a household with an 11,000
sqft lot does not enter the second price tier until 55 ccf. Moreover, these inframarginal price
differences are not trivial: households with lots smaller than 7500 sqft face a marginal price
increase of 19.4% nine units of consumption sooner than do households with slightly larger
lot sizes. At the 11,000 sqft threshold, this inframarginal price difference is sustained for 18
ccf every two months.

The standard identifying assumptions in RD frameworks are that: (a) other covariates
move smoothly through the discontinuity induced by the running variable, and (b) the
running variable cannot be manipulated. The latter assumption is satisfied by noting that lot
sizes are fixed over time and recorded by county surveyors. In our setting, if other variables
associated with water consumption changed discontinuously then we would worry that (a)
is not satisfied. As a visual test of this assumption, we present in Figure 7 three relevant
variables for water consumption across our RD threshold: irrigable area of lot, indoor
square footage of the home, and number of bathrooms. Notably, irrigable area, which we
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Figure 7: Covariate distributions across lot-size thresholds for both utilities
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anticipate to be highly correlated with lot size, moves nearly linearly through the lot-size
discontinuities, which provides convincing support for the RD assumptions. We observe
no obvious discontinuity in square footage and number of bathrooms at the discontinuities
either. We present the same graphical analysis for additional covariates in the appendix
(See Figure A.3).

3.4 Estimating baseline treatment effects of home water reports

Our primary regression framework is a panel difference-in-difference design to estimate
the effect of the randomly assigned HWR treatment on average household water use. We
calculate normalized water use by dividing each household’s water use in gallons-per-day
(GPD) by the average consumption of the control group in the post-treatment period within
the same utility. This specification maintains the interpretation of coefficients as percentage
changes in water consumption, but unlike the logarithmic transformation does not dampen
the effect of high users. This is important in the context of social comparisons because prior
research shows that most of the savings are concentrated among high users (Allcott, 2011;
Brent et al., 2015). We include household fixed effects to control for all static household
heterogeneity. Although we are not concerned about traditional forms of endogeneity due
to random assignment of treatment we prefer the specification with household fixed effects
to focus on how any price effects from the lot-size discontinuity change once a household
starts receiving HWRs.

To estimate our primary treatment effects, we specify the following equation:

w̃it = αi + γ1Treatit + γ2(Treatit × Largei) + βXit + τit + ε it, (7)

where w̃it is normalized average daily water consumption for household i during billing
period t. Treatit is an indicator if household i was in the randomized treatment group
in a treated time period. We interact the treatment indicator with Largei, an indicator
for whether the household is in the Large Utility, to account for potential heterogeneity
in treatment effects across the utilities. Lastly, Xit is a vector of weather controls, αi is a
household fixed effect, τit is a period-by-utility fixed effect, and ε it is the residual error
term. We cluster all standard errors at the household level. γ̂1 and γ̂1 + γ̂2 are average
treatment effect estimates of the HWRs for the Small and Large utilities, respectively.

Additionally, to ensure that we are comparing similar populations who face similar tem-
poral shocks in both utilities, we examine the treatment effect model restricted to house-
holds within 10 kilometers (km) from the shared utility border.
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3.5 Estimating the price-level effect

The price-level effect (PLE) is the differential responsiveness to HWR treatment driven by
different economic incentives that households face. We exploit two sources of variation to
identify the PLE in a difference-in-discontinuity (DD) design. The first source of variation
is the random assignment of treatment status and the second source is identified by the
lot-size discontinuity in the rate structure.

Formally, our approach interacts the variables in equation 7 with an indicator for whether
the household is below the lot-size threshold:

w̃it = αi + γ1Treatit + γ2(Treatit × Lowi) + γ3(Treatit × Loti) + βXit + τit + ε it (8)

where all variables are the same as in equation 7, except we add an interaction of treatment
with a new indicator (Lowi), which signifies that a household is below any of the lot-
size thresholds in the Large Utility (and, thus, more likely to face an exogenously higher
marginal price). Because the lot-size discontinuity exists only for the Large Utility, we
identify the PLE using Large Utility customers only. We vary the bandwidth of lot-size
from +/−1000 sqft, +/−750 sqft, +/−500 sqft, and +/−250 sqft of lot-size thresholds,
as well as an optimally chosen bandwidth following Calonico et al. (2014). We include
an interaction with treatment and the continuous lot size (Loti) to control for differential
treatment effects based on lot size.7 The base effect of the lot-size discontinuity is absorbed
by the household fixed effects.

We include several variants of this specification. We estimate a model with differential
treatment-lot size interactions on either side of the lot-size threshold. We also estimate this
model for the three primary lot-size discontinuities (at 7000 sqft, 11,000 sqft, and 17,500
sqft) individually.

The specification in equation 8 is the reduced form of a difference-in-discontinuity de-
sign. The discontinuity at the lot-size thresholds (captured by Lowi) changes the prob-
ability that a given household will face the higher marginal price in that billing period,
although Lowi does not assign higher marginal prices to customers perfectly. Thus, we
are operating with a fuzzy discontinuity. To estimate a local average treatment effect of
exogenous marginal price assignment, we instrument for a whether a customer faces the
higher marginal price (High Pricei) with being below the lot-size threshold (Lowi). Thus,
we estimate:

w̃it = αi + γ1Treatit + γ2(Treatit × ̂High Pricei) + γ3(Treatit × Loti) + βXit + τit + ε it (9)

7Lot size is correlated with water use, which is an important driver in treatment heterogeneity in peer
comparisons for water conservation (Ferraro and Price, 2013; Brent et al., 2015).
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where ̂High Pricei is predicted by Lowi in the first stage.
The price-level effect, the amount of the HWR treatment effect that is driven by exogenous

differences in marginal price levels, is given by γ2 in equations 8 and 9. These models allows
us to test the hypothesis that γ2 = 0. The regressions include both household and weather
controls (Xit), household fixed effects (αi), and billing period-by-utility (τit) fixed effects.

We also estimate the analogs of equations 8 and 9 for baseline effects on water consump-
tion. That is, we re-estimate equations 8 and 9 without our randomized treatment indicator.
This framework allows us to assess how price variation from the lot-size discontinuities
affects demand directly.

As a robustness check, we include a third source of variation across utilities. The pri-
mary motivation for this robustness check is that our discontinuity depends on lot size,
which in turn is correlated with water consumption. Because many studies find that high-
use households are more responsive to social comparisons, we estimate a double-difference-
in-discontinuities (DDD) model that nets out any primary effect of the lot-size threshold.
We add the additional difference across utilities in the following framework:

w̃it = αi + γ1Treatit

+ γ2(Treatit × Largei) + γ3(Treatit × Lowi) + γ4(Treatit × Largei × Lowi)

+ γ5(Treatit × Loti) + γ6(Treatit × Loti × Largei)

+ βXit + τit + ε it,

(10)

In this setup, γ4 is our estimate of the PLE. This specification exploits the fact that while
the Large Utility has a lot-size discontinuity in the rate structure the Small Utility does
not.8 This specification addresses the potential confounding of treatment heterogeneity
associated with lot size around the threshold that is not accounted for by the linear lot-size
interaction with treatment.9

3.6 Estimating the price-sensitivity effect

Next, we estimate the price-sensitivity effect (PSE), which we defined to be how treatment
induces differential responses to price changes. We exploit price changes over time and
across the utilities in order to estimate a demand equation and then interact the price vari-
able with our randomized HWR treatment variables. Our demand regressions take the

8Because the Small Utility does not have a corresponding “High Price” at the discontinuity, we do not
estimate equation 10 in a fuzzy RD framework.

9One might wonder why we did not consider the utility boundary as a spatial regression discontinuity
similar to Ito (2014). In our setting, water utility boundaries also serve as political boundaries that induce
numerous other changes in tax rates, city regulations, and so forth, thus we did not believe the abrupt change
in prices at utility borders would provide a viable identification strategy.
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following form:

ln(wit) = αi + β1 ln( p̂it) + β2(ln( p̂it)× Treatit) + γ1Treatit + τt + ε it (11)

where p̂it is our endogenous price variable, τt are billing-period fixed effects, and all other
variables are defined the same as in equations 8 and 9. We estimate equation 11 on our full
sample including both utilities. Additionally, we run an additional specification limiting
our sample to households within 10km of a common district boundary. Similar to the
price-level effect models, we also estimate a baseline demand model without any treatment
interactions for comparison.

The presence of increasing block rates makes price endogenous because the marginal
price the consumers faces depends on the quantity consumed. Thus, we estimate equa-
tion 11 using two-stage-least squares (2SLS) where price and the associated interactions
are endogenous variables. Following the framework in Olmstead (2009) and Wichman et
al. (2016), we instrument for the actual price the consumer faces (either marginal or av-
erage) with the full set of marginal prices from the rate structure. All price instruments
are transformed by natural logarithms. Therefore, our identification comes from variation
in water rates set by the utility as opposed to changes in the households’ consumption.
There is an ongoing debate whether marginal or average price is the relevant price signal
for decision-making when consumers face increasing block rates (Nataraj and Hanemann,
2011; Ito, 2014; Wichman, 2014), so we model price as both average and marginal price.10

The estimated coefficient β̂2 is a direct estimate of our price-sensitivity effect. That
is, the degree to which randomized HWR treatments affect consumers’ price sensitivity.
Our framework allows for a direct test of the price-sensitivity hypothesis, i.e., that β̂2 = 0.
Evidence of a nonzero PSE would suggest that behavioral treatments interact with structural
parameters of demand. On the other hand, evidence of a PSE equal to zero would provide
support for the notion that our randomized nudges act solely through behavioral channels.

4 Results and discussion

We first summarize the baseline results for the field experiment and the natural experiment.
These results set the stage for understanding the interactions between prices and social
pressure when presenting the results for the price-level effect and the price-sensitivity effets.

10We define average price as the volumetric proportion of the bill divided by quantity consumed that month.
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4.1 Baseline treatment effects

In Table 2, we present treatment effects for the randomized home water reports (HWRs).11

In the first two columns, our treatment effects for both the Large and Small utilities are
−3.7% and −3.8% reductions in water consumption due to randomized HWRs. Both treat-
ment effects are significant at the p < 0.01 level. In the third column, we pool both utilities,
but allow for different treatment responses by including an interaction between our treat-
ment variable and and an indicator for Large Utility. In the final column, we restrict the
sample of the Large Utility to households within 10km of the Small Utility’s border to en-
sure common support across both utilities. Overall, we find consistent evidence in line with
previous research that HWRs reduce water consumption by 3− 5% (Ferraro and Price, 2013;
Brent et al., 2015) and we observe nearly identical treatment effects across utilities.

Table 2: Baseline treatment effects

(1) (2) (3) (4)
Large Small Both 10km

Treat -0.037∗∗∗ -0.038∗∗∗ -0.038∗∗∗ -0.038∗∗∗

(0.004) (0.008) (0.008) (0.008)
Treat*Large 0.001 0.001

(0.009) (0.010)
Observations 602,415 453,624 1,056,039 606,876
Households 26,729 19,395 46,124 26,174
Household FEs Yes Yes Yes Yes
Sample Full Full Full 10km
Period-by-utility FEs Yes Yes Yes Yes

Notes: Dependent variable is average daily water consumption normal-
ized by utility-specific control group consumption. All specifications con-
trol for evapotranspiration and precipitation. Robust standard errors are
clustered at the household level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

4.2 Baseline quasi-experimental estimates

We next present the baseline effects of how inframarginal price changes driven by lot-size
discontinuities affect consumer demand. In Figure 8, there is no obvious graphical evi-
dence of a discontinuous change in consumption that matches the discontinuity in prices
shown in Figure 6. Additionally, we present results from the reduced form of the local
linear discontinuity model in panel (a) of Table 3. The coefficients on Low—the indica-
tor that a household is below the lot-size threshold, thus face a higher expected marginal
price—suggest a small negative effect at the largest bandwidth that shrinks and becomes
statistically insignificant at smaller bandwidths. Because the discontinuity only increases

11Because we do not observe whether households actually read the HWRs, these treatment effects should be
interpreted as intent-to-treat effects.
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the probability that consumers face a higher marginal price we also estimate a local lin-
ear fuzzy regression discontinuity model and present results in panel (b) of Table 3. The
results are similar to the reduced form, where there is a significant negative effect of fac-
ing higher marginal prices due to the lot size discontinuity at larger bandwidths, but no
effect at smaller bandwidths. The coefficients from fuzzy discontinuity models are larger,
however, because the estimated first-stage coefficient is approximately 0.2.
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Figure 8: Effect of discontinuity on consumption at lot-size thresholds

These results provide evidence that there is no statistically significant first-order re-
sponse of the lot-size threshold on consumption. Coefficients in smaller bandwiths, al-
though insignificant, are positive. This result is surprising considering that both Low and
High Price indicate that the customer faces a higher price. There are several explanations
for why consumers do not appear to respond to this price differential as anticipated. First,
consumers may respond to average as opposed to marginal prices, and although the ef-
fect of the discontinuity on average prices is still present it is not as large as the impact
on marginal prices. A slightly different interpretation is that customers do not respond to
inframarginal prices, and that they learn about their consumption at the end of the billing
period. Alternatively, the difference in prices may not be sufficiently large to warrant a
demand response. However, as noted above, the change in marginal prices at the lot-size
threshold is roughly 20%.

Overall, our initial analysis produces estimates of average treatment effects for HWRs
that are squarely within the results of previous studies. This consistency provides us with
confidence that the experiments were conducted accurately. We must consider the lack of
a primary demand effect in the natural experiment using lot-size discontinuities to identify
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Table 3: Baseline effects of lot-size discontinuities on household water consumption

(a) Reduced form

(1) (2) (3) (4) (5)
1000sqft 750sqft 500sqft 250sqft Optimal

Low -0.023∗∗ -0.010 -0.010 0.012 0.017
(0.012) (0.013) (0.015) (0.021) (0.026)

Sq.ft. 0.833∗∗∗ 1.303∗∗∗ 1.425∗∗∗ 3.071∗∗∗ 1.951
(0.135) (0.201) (0.361) (1.037) (2.418)

Low*Sq.ft. -0.027 -0.071 -0.113∗∗ -0.065 -0.062
(0.045) (0.050) (0.051) (0.061) (0.071)

Observations 160,209 125,142 90,021 54,849 66,530
Households 12,615 9,849 7,082 4,309 2,934
Household FEs No No No No No
Period-by-utility FEs Yes Yes Yes Yes Yes
Bandwidth (sqft) 1000 750 500 250 128

(b) Fuzzy discontinuity

(1) (2) (3) (4) (5)
1000sqft 750sqft 500sqft 250sqft Optimal

High Price -0.134∗∗ -0.057 -0.055 0.062 0.058
(0.064) (0.065) (0.074) (0.078) (0.080)

Sq.ft. 0.880∗∗∗ 1.344∗∗∗ 1.479∗∗∗ 2.915∗∗∗ 2.599∗∗∗

(0.124) (0.167) (0.308) (0.730) (0.874)
Low*Sq.ft. -0.018 -0.069∗∗∗ -0.112∗∗∗ -0.067∗ -0.055

(0.024) (0.026) (0.031) (0.037) (0.039)
Observations 160,209 125,142 90,021 54,849 50,770
Households 12,615 9,849 7,082 4,309 3,990
Household FEs No No No No No
Period-by-utility FEs Yes Yes Yes Yes Yes
Bandwidth (sqft) 1000 750 500 250 212
First-Stage Coef 0.18 0.19 0.19 0.20 0.21
First-Stage SE 0.007 0.008 0.009 0.01 0.01

Note: Sample includes households from the Large Utility only. Robust standard
errors are clustered at the household level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

variation in marginal prices when interpreting the results. Despite the lack of a primary
effect we believe it is important to examine the interaction between prices and nudges for
two reasons. First, the lack of a response may constitute an internality that the nudge
may correct. Second, the information in the HWR on financial savings is dictated by the
highest marginal price the consumer faced last billing period (see bottom of Fig. 3), so
the financial benefits of conservation will appear larger to households below the lot-size
threshold relative to similar households above lot size thresholds.
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4.3 Estimates of the price-level effect

We now turn to Table 4, in which we present our primary results of the price-level effect.
Recall, the PLE in our setting is the interaction between the treatment effect of the HWR
and the exogenous assignment of a higher marginal price via the lot-size discontinuity. We
present results only for the Large Utility because the Small Utility does not have discontin-
uous changes in price due to lot-size thresholds (see Fig. 5). We focus first on the results
from the reduced form equation in panel (a). The coefficient on the interaction Treat*Low
is our estimate of the PLE. We vary the bandwidth (distance from the lot-size discontinu-
ity) in each of the columns. For all bandwidths, we estimate a small positive effect, which
means that the higher prices in the Low group decreases the conservation generated from
the HWRs. However, the effect is not always statistically significant. In our narrowest band-
width, the interacted coefficient is 0.013 with a standard error (robust to within-household
correlation) of 0.013.

Next, in panel (b) of Table 4, we estimate the fuzzy RD version of the PLE. In this
specification we interact an indicator for whether a household faces the higher price with
our randomized treatment indicator, where the interaction variable is instrumented by the
Lot*Treatment interaction. In this model there is a positive and significant effect of being
treated while facing higher marginal prices in all but the specifications with the tightest
two bandwidths. These results may be due to financial incentives crowding out intrinsic
incentives (Pellerano et al., 2017). The first-stage coefficient in these specifications ranges
from 0.10 to 0.14.

In both panels of Table 4, our primary treatment effect increases from its baseline level.
This result suggests that by focusing only on households within narrow bandwidths around
the lot-size threshold may change the composition of households from our primary sample.
We suspect that the larger treatment effects are driven by larger water users who might also
have larger lot sizes. Thus, because we pool all lot-size discontinuities in the rate structure
together, our PLE estimates in Table 4 may mask important heterogeneity.

In Table 5, we estimate PLEs for each discontinuity separately, again for the Large Util-
ity only. For the 7500 and 11,000 sqft discontinuities in panels (a) and (b), we again find
precisely estimated null effects, with standard errors increasing slightly with smaller band-
widths. For these models, the baseline treatment effect is also much more similar to the
baseline effects in Table 2. These results are based on larger, more representative subsam-
ples of our data. We only present coefficients from reduced form models. Because our
reduced-form coefficients are 0.007 and −0.001 in the optimal bandwidth models, the first-
stage coefficients would need to be extraordinarily small for the LATEs to be economically
meaningful in the fuzzy RD framework.

For the discontinuity at 17,500 sqft, however, we observe both a substantially larger base
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Table 4: Price-level effect

(a) Reduced form

(1) (2) (3) (4) (5)
1000sqft 750sqft 500sqft 250sqft Optimal

Treat -0.061∗∗∗ -0.064∗∗∗ -0.059∗∗∗ -0.062∗∗∗ -0.065∗∗∗

(0.006) (0.007) (0.008) (0.010) (0.011)
Treat*Low 0.012∗ 0.013 0.017∗ 0.011 0.013

(0.007) (0.008) (0.009) (0.012) (0.013)
Observations 284,298 222,168 160,100 97,496 90,271
Households 12,615 9,849 7,082 4,309 3,990
Sample Large only Large only Large only Large only Large only
Household FE Yes Yes Yes Yes Yes
Period-by-utility FEs Yes Yes Yes Yes Yes
Lot Size Int. Yes Yes Yes Yes Yes
Bandwidth 1000 750 500 250 212

(b) Fuzzy discontinuity

(1) (2) (3) (4) (5)
1000sqft 750sqft 500sqft 250sqft Optimal

Treat -0.110∗∗∗ -0.112∗∗∗ -0.113∗∗∗ -0.096∗∗∗ -0.101∗∗∗

(0.019) (0.020) (0.021) (0.025) (0.026)
High Price*Treat 0.120∗∗∗ 0.116∗∗∗ 0.135∗∗∗ 0.085 0.091

(0.041) (0.044) (0.044) (0.054) (0.057)
Observations 284,298 222,168 160,100 97,496 73,472
Households 12,615 9,849 7,082 4,309 3,241
Household FEs Yes Yes Yes Yes Yes
Period-by-utility FEs Yes Yes Yes Yes Yes
Bandwidth 1000 750 500 250 157
First-Stage Coef 0.10 0.11 0.13 0.14 0.14
First-Stage SE 0.006 0.006 0.007 0.010 0.01

Notes: Dependent variable is average daily water consumption normalized by utility-
specific control group consumption. All specifications control for evapotranspiration
and precipitation. Columns designate the bandwidths around the lot size thresh-
olds in sqft Robust standard errors are clustered at the household level. ∗p<0.1;
oi∗∗p<0.05; ∗∗∗p<0.01

treatment effect (11− 14% reductions in average daily consumption) and a large, positive
PLE. This PLE estimate, however, is estimated with large confidence intervals, due in part
to the smaller number of households near this discontinuity (only 374 households are in-
cluded in the optimal bandwidth subsample). Households with larger lots tend to use more
water for irrigation, which is why we suspect we see larger base treatment effects near the
17,500 sqft discontinuity. Because this estimate is positive, we interpret this as suggestive
evidence that higher prices crowd out conservation among high use households on larger
lots. Overall, we place more confidence in our precisely estimated null effects based on
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Table 5: Price-level effect at individual discontinuities

(a) 7500 sqft discontinuity
(1) (2) (3) (4) (5)

1000sqft 750sqft 500sqft 250sqft Optimal
Treat -0.040∗∗∗ -0.039∗∗∗ -0.043∗∗∗ -0.034∗∗∗ -0.036∗∗∗

(0.007) (0.007) (0.009) (0.011) (0.011)
Treat*Low 0.007 0.007 0.010 0.002 0.007

(0.007) (0.008) (0.010) (0.013) (0.013)
Observations 182,130 141,984 98,483 58,625 56,411
Households 8,152 6,350 4,393 2,611 2,512
Sample Full Full Full Full Full
Household FE Yes Yes Yes Yes Yes
Period-by-utility FEs Yes Yes Yes Yes Yes
Lot Size Int. No No No No No
Bandwidth 1000 750 500 250 212

(b) 11,000 sqft discontinuity
(1) (2) (3) (4) (5)

1000sqft 750sqft 500sqft 250sqft Optimal
Treat -0.038∗∗∗ -0.041∗∗∗ -0.030∗∗ -0.047∗∗∗ -0.050∗∗∗

(0.011) (0.012) (0.014) (0.017) (0.017)
Treat*Low 0.009 0.005 0.010 0.011 -0.001

(0.014) (0.017) (0.019) (0.024) (0.027)
Observations 74,331 57,842 45,132 28,856 24,999
Households 3,249 2,526 1,969 1,259 1,089
Sample Full Full Full Full Full
Household FE Yes Yes Yes Yes Yes
Period-by-utility FEs Yes Yes Yes Yes Yes
Lot Size Int. No No No No No
Bandwidth 1000 750 500 250 212

(c) 17,500 sqft discontinuity
(1) (2) (3) (4) (5)

1000sqft 750sqft 500sqft 250sqft Optimal
Treat -0.119∗∗∗ -0.143∗∗∗ -0.112∗∗∗ -0.121∗∗∗ -0.121∗∗∗

(0.025) (0.027) (0.032) (0.041) (0.044)
Treat*Low 0.051∗ 0.065∗ 0.066∗ 0.074 0.086∗

(0.030) (0.034) (0.037) (0.047) (0.051)
Observations 26,948 21,599 15,903 9,623 8,514
Households 1,176 941 695 422 374
Sample Full Full Full Full Full
Household FE Yes Yes Yes Yes Yes
Period-by-utility FEs Yes Yes Yes Yes Yes
Lot Size Int. No No No No No
Bandwidth 1000 750 500 250 212

Notes: Dependent variable is average daily water consumption normalized by utility-
specific control group consumption within 1,000 sqft of the lot-size discontinuity. All
specifications control for evapotranspiration and precipitation. Robust standard errors
are clustered at the household level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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larger and more representative samples nearby the 7000 and 11,000 sqft thresholds.12

We suspect that large effects at the 17,500 sqft threshold are driven by relatively few
unrepsentative households, and may be biasing the our primary PLE estimates. We repli-
cate our primary models presented in Table 4 excluding households nearby the 17,500 sqft
threshold. These results, presented in Table A.1 for the reduced form and Table A.2 for the
fuzzy RD, support our intuition. Removing the 17,500 threshold results in PLE estimates
closer to zero with smaller standard errors. In our optimally chosen bandwidth models, our
reduced-form PLE estimate is 0.003 (0.011) and our fuzzy RD PLE estimate is 0.025 (0.047).

Because high water-use households are more responsive to social comparisons, it is im-
portant to evaluate how the interactions may differ across the distribution of pre-treatment
consumption. Figure 9 shows that treatment heterogeneity is similar across quartiles of lot
size and baseline water use. Households with large lots and high-use households possess
the largest treatment effects. The average consumption levels using the 1000 sqft band-
width for the 7500, 11,000, and 17,500 sqft thresholds roughly correspond to the 50th, 75th,
and 90th percentiles of the full consumption distribution. Therefore, the results presented
in Table 5 also provide insight on the treatment heterogeneity, and we see no significant
interactions between prices and nudges across the distribution of consumption.13

4.3.1 Robustness of price-level effects

We include several additional analyses to support our results. First, we add a third dif-
ference to our difference-in-discontinuity design because it is possible that responsiveness
to HWRs is greater for households with higher consumption levels, which is correlated
positively with lot size (our running variable in the regression discontinuity). To imple-
ment the third difference, we estimate Equation 11 on a sample including both utilities. We
present these results in Table 6. In these specifications, the reduced-form PLE is identified
by the coefficient on Treat*Low*Large, or, the marginal change in the treatment effect due
to facing an exogenously higher marginal price by being just below the lot-size threshold
relative to similar households in the small utility who face no price discontinuity. In these
specifications, we find no statistical evidence of a PLE, which is a precisely estimated zero

12We explore this result further in Figure A.4 in the appendix, in which we plot the base treatment effect coef-
ficients interacted with 250 sqft lot-size bins near the lot-size thresholds. We do so for both utilities. Evidence of
a nonzero PLE would be revealed by a discontinuous jump in treatment effect estimates at the lot-size thresh-
olds. Specifically, in the presence of a PLE that increases conservation from HWRs we expect the treatment
effect immediately to the left of the threshold to be larger in magnitude than the treatment effect immediately
to the right of the threshold. For the 7,500 sqft discontinuity, we observe the treatment effect move smoothly
through the discontinuity for both utilities. All estimates are statistically similar, shown by overlapping 95%
confidence intervals. The results for the 11,000 and 17,500 sqft thresholds are noisier, but confidence intervals
also overlap for all estimates within a utility.

13For reference, using the 1,000 sqft bandwidth the average consumption around the 7,500 sqft threshold is
492 GPD, 662 GPD around the 11,000 sqft threshold, and 891 GPD around the 17,500 sqft threshold.
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Figure 9: Treatment heterogeneity by baseline consumption and lot size quartiles

for bandwidths of 1000 sqft and 750 sqft. At the smaller bandwidths the effect becomes
negative but is still small and insignificant. When we replicate these models excluding
households nearby the 17,500 threshold, we find PLEs that are closer to zero with smaller
standard errors. Results are presented in Table A.3 in the appendix.

We include several other robustness checks. First, we include interaction terms with
lot-size on both sides of the threshold, as is typical in local linear RD designs. The results,
in Table A.4, are virtually unchanged: we find small positive but insignificant effects for the
PLE. Additionally, we perform a falsification test in the Large Utility at false discontinuities
of 9000 sqft and 13,000 sqft We choose these thresholds because they are near our true
thresholds without overlapping at the largest bandwidths (1000 sqft). These falsification
tests examine whether our lot size thresholds would partially pick up the smaller treatment
effects (in absolute value), associated with smaller lots that use less water. If the true PLE
is negative (households who face higher prices are more responsive to HWRs) the small
lot size effect will bias our estimates of the PLE towards zero. These results are presented
in Table A.5. Here again, we find statistical zeros, and the point estimates switch between
positive and negative values.14

14There is a larger and noisy negative PLE at the false 13,000 sqft discontinuity, but that is likely due to noisy
estimates in a small sample (≈ 400 households).
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Table 6: Price-level effect: Difference-in-difference-in-discontinuity

(1) (2) (3) (4) (5)
1000sqft 750sqft 500sqft 250sqft Optimal

Treat -0.068∗∗∗ -0.067∗∗∗ -0.045∗ -0.072∗∗ -0.079∗∗

(0.016) (0.019) (0.023) (0.033) (0.036)
Treat*Large 0.007 0.002 -0.015 0.010 0.013

(0.017) (0.020) (0.025) (0.035) (0.038)
Treat*Low 0.013 0.009 0.007 0.026 0.042∗∗

(0.010) (0.012) (0.015) (0.019) (0.020)
Treat*Low*Large -0.000 0.005 0.011 -0.014 -0.029

(0.013) (0.015) (0.017) (0.023) (0.024)
Observations 414,260 318,956 226,140 134,954 123,053
Households 18,176 13,983 9,904 5,907 5,389
Sample Both Utilities Both Utilities Both Utilities Both Utilities Both Utilities
Household FE Yes Yes Yes Yes Yes
Period-by-utility FEs Yes Yes Yes Yes Yes
Lot Size Int. Yes Yes Yes Yes No
Bandwidth 1000 750 500 250 212

Notes: Dependent variable is average daily water consumption normalized by utility-specific control group
consumption. All specifications control for evapotranspiration and precipitation. Columns designate the band-
widths around the lot size thresholds in sqft Robust standard errors are clustered at the household level.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Lastly, we consider the possibility for dynamic adjustment in the PLE. Ito et al. (2018)
shows different levels of persistence for financial incentives compared to moral suasion in
energy and Brent et al. (2017) show that financial nudges are more persistent than nudges
using moral suasion for water conservation. Therefore, the PLE may not be present until
the conservation effect of social pressure begins to wane. We estimate price-level effects
interacted with an indicator for the year after treatment begins to show differences in the
persistence of the PLE. We present the regression results in Table A.6. There is no evidence
of a PLE in the year of or year after treatment. We also explore seasonal effects by inter-
acting the PLE with a dummy variable for summer in Table A.7. These results suggest that
negative PLEs are observed in the summer months (around 2− 3% reductions), when con-
servation signals and prices might be more salient, and we observe positive PLEs of similar
magnitudes in non-summer months. In our tightest, optimally chosen bandwith, both of
these effects are statistically similar to zero.

To recap, we find little evidence that suggests that exogenously assigned differences in
marginal prices increase the effectiveness of HWRs. In fact, we uncover some evidence
that higher prices may slightly decrease conservation effects from behavioral interventions
among high-use households. This result is somewhat surprising because the HWRs make
the private economic benefits of water conservation more salient (e.g., bottom panel in Fig-
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ure 3). HWRs provide cost-savings information that consumers might expect from changing
behavior or technology. Consumers just above/below the price discontinuities we use for
identification would thus face nontrivial differences in expected cost-savings despite be-
ing otherwise similar types of households, but we observe no statistical difference in their
response to HWRs. Our analysis thus far suggests that the primary mechanism for the
HWR operates through channels of increasing (the salience of) the moral costs of water
consumption.

4.4 Price-sensitivity effects

We now turn to our results of the price-sensitivity effects. We first present our initial de-
mand specifications in Table 7. In the first two columns, we present naïve models using
endogenous marginal and average price variables. As expected with increasing block-rate
structures, we observe positive price elasticities. Our IV approach, in columns (3) and (4),
performs comparatively better, providing sensible demand elasticities (−0.25 for MP and
−0.17 for AP) which are within the range of previous estimates for both marginal and av-
erage prices arising from reduced-form and structural models of water demand (Dalhuisen
et al., 2003; Olmstead, 2009; Nataraj and Hanemann, 2011; Wichman, 2014). In the present
analysis, we do not take a stand on whether average or marginal price responsiveness is the
correct specification, rather we model them side-by-side. In columns (5) and (6), we restrict
the sample to households within 10km of the shared border, and our elasticity estimates are
similar to the full sample.

Table 7: Baseline demand models

(1) (2) (3) (4) (5) (6)
MP AP MP AP MP AP

ln(MP) 0.549∗∗∗ -0.246∗∗∗ -0.278∗∗∗

(0.007) (0.012) (0.017)
ln(AP) 0.564∗∗∗ -0.169∗∗∗ -0.187∗∗∗

(0.008) (0.011) (0.016)
Observations 939,775 929,842 928,032 921,537 572,528 570,981
Households 43,133 43,132 43,124 43,120 25,990 25,987
Household FEs Y Y Y Y Y Y
Period FEs Y Y Y Y Y Y
IV – – Y Y Y Y
Sample Full Full Full Full 10km 10km

Note: Dependent variable is the natural log of average daily water consumption. All spec-
ifications control for evapotranspiration and precipitation. Prices are instrumented with
full set of marginal prices from the utility rate schedule and associated interactions with
exogenous variables. Robust standard errors are clustered at the household level. ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01

We present results for the PSE in Table 8. Recall, the PSE is the degree to which HWRs
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increase consumers’ price sensitivity, e.g., by making the costs of consumption more salient.
Identification of this effect is straightforward: we estimate price elasticities of water demand
equation as in Equation 11 and interact our price variables with the randomized HWR
treatment. The resulting coefficient on that interaction is the PSE.

In columns (1) and (2) of Table 8, we report PSE estimates for our pooled sample.
We find statistically significant evidence that HWRs increase price sensitivity under the

Table 8: Price-sensitivity effect

(1) (2) (3) (4)
MP AP MP AP

Treat -0.035∗∗∗ -0.042∗∗∗ -0.041∗∗∗ -0.044∗∗∗

(0.003) (0.003) (0.005) (0.005)
ln(MP) -0.221∗∗∗ -0.236∗∗∗

(0.011) (0.015)
ln(MP)*Treat -0.030∗∗ -0.012

(0.014) (0.020)
ln(AP) -0.191∗∗∗ -0.189∗∗∗

(0.010) (0.014)
ln(AP)*Treat -0.002 0.002

(0.012) (0.016)
Observations 928,032 921,537 572,528 570,981
Households 43,124 43,120 25,990 25,987
Household FEs Y Y Y Y
Period FEs Y Y Y Y
IV Y Y Y Y
Sample Full Full 10km 10km

Note: Dependent variable is the natural log of average daily wa-
ter consumption. All specifications control for evapotranspiration
and precipitation. Prices are instrumented with full set of marginal
prices from the utility rate schedule and associated interactions
with exogenous variables. Interactions with indicators for treat-
ment periods are included but coefficients are not reported for clar-
ity. Robust standard errors are clustered at the household level.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

marginal price, but not the average price, demand specification. The PSE coefficient in
column (1) is −0.03, which increases price sensitivity by approximately 13% for the MP
specification. In column (2), this coefficient is −0.002, which suggests that there is no PSE
for specifications that include average prices. We might be concerned that in addition to
price variation, there is significant variation in unobservables across utilities that could im-
pact price elasticity. We control for these cross-border differences by restricting the sample
to households that are less than 10km away from the Small Utility’s boundary. Columns
(3) and (4) present the PSE estimates in the restricted sample, and we find no evidence of
a statistically or economically significant PSE in either the MP or AP specification. Overall,
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these results are slightly less decisive than our PLE results, but still do not find consistent
evidence that social comparisons have meaningful interactions with prevailing economic
incentives.

5 Concluding remarks

In this paper, we explore the interaction of prices and behavioral nudges. We compare wa-
ter consumer responses to a randomized behavioral messaging campaign for households
who face differential exogenously assigned marginal prices. The results from our analysis
suggest that households who have a greater economic incentive to conserve respond to the
social comparison similarly to households with less economic incentive to conserve. This
result suggests that the private economic benefits of conservation may be inconsequential
for behavioral treatments to be effective. Additionally, we estimate the degree to which the
behavioral treatment affects price sensitivity, finding limited evidence that there is an eco-
nomically meaningful relationship between prices and nudges. Overall, our results suggest
that although there is theoretical justification for why behavioral nudges and economic in-
centives should interact, we find little empirical support that this interaction is meaningful.

Behavioral nudges do not exist in a vacuum. Although the randomized deployment
of many behavioral nudges provides strong internal validity for the estimation of causal
effects, as Allcott (2015) shows, the treatment effects from any given location may be a func-
tion of the underlying characteristics of the specific population. In order to ensure that the
estimates from any one location are externally valid, it is critical to identify the sources of
heterogeneity and adjust the magnitude based on the characteristics of the target popula-
tion. This is challenging when the entire experimental sample faces the same set of existing
policies. We focus on how variation in prevailing water prices affects consumer respon-
siveness to behavioral nudges intended to encourage water conservation that include social
comparisons. We do not find any evidence that the response to this prevalent behavioral
nudge has any meaningful interactions with underlying water rates. This is an important
result for many settings in which resource prices are low or zero, or when scarcity pricing
may not be politically feasible, we show that behavioral nudges may still be effective to
mechanisms to encourage conservation.

In addition to external validity, our results have implications for the behavioral mecha-
nisms through which nudges operate. Finding no evidence of heterogeneity due to different
private benefits of conservation leads us to conclude that consumers are primarily respond-
ing to social comparisons due to increased salience of the moral cost of water consumption.
This finding has important implications for the welfare effect of nudges as shown by Allcott
and Kessler (2019). If nudges operate as a moral tax, which is consistent with our findings
in this paper, they will only be welfare enhancing if the social cost of energy/water exceeds
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the current private costs. This suggests a re-thinking of behavioral policies that specifically
target welfare improvements as opposed to simply changing behavior. Given substantial
evidence of behavioral biases in energy and water markets (Allcott and Wozny, 2014; Sex-
ton, 2015; Wichman, 2017; Brent and Ward, 2018, 2019) it is worthwhile to find ways to
promote pro-social behavior that also improves private decisions.
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Online Appendix: Additional Results
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Figure A.1: Home Water Report

Note: This is an example of a generic “Yellow” Home Water Report
(HWR). Households receiving this report used less water than their
peer group average.
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Figure A.2: Home Water Report

Note: This is an example of a generic “Green” Home Water Report
(HWR). Households receiving this report were in the bottom 20%
of their peer group.

38



19
20

19
40

19
60

19
80

20
00

M
ea

n 
ye

ar
 b

ui
lt

3000 7500 11,000 17,500 30,000

Lot size bin (sq>)

Large UBlity

19
20

19
40

19
60

19
80

20
00

M
ea

n 
ye

ar
 b

ui
lt

3000 7500 11,000 17,500 30,000

Lot size bin (sq>)

Small UBlity

2
3

4
5

6

M
ea

n 
nu

m
be

r o
f b

ed
ro

om
s

3000 7500 11,000 17,500 30,000

Lot size bin (sq=)

Large UAlity

2
3

4
5

6

M
ea

n 
nu

m
be

r o
f b

ed
ro

om
s

3000 7500 11,000 17,500 30,000

Lot size bin (sq=)

Small UAlity

1
1.

2
1.

4
1.

6
1.

8
2

M
ea

n 
nu

m
be

r o
f fl

oo
rs

3000 7500 11,000 17,500 30,000

Lot size bin (sq?)

Large UClity

1
1.

2
1.

4
1.

6
1.

8
2

M
ea

n 
nu

m
be

r o
f fl

oo
rs

3000 7500 11,000 17,500 30,000

Lot size bin (sq?)

Small UClity

Figure A.3: Additional covariate distributions across lot-size thresholds for both utilities
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Figure A.4: Treatment effects by lot-size bin

40



Table A.1: Reduced-form estimates of the price-level effect without 17,500 lot-
size threshold

(1) (2) (3) (4) (5)
1000sqft 750sqft 500sqft 250sqft Optimal

Treat -0.062∗∗∗ -0.065∗∗∗ -0.058∗∗∗ -0.063∗∗∗ -0.055∗∗∗

(0.007) (0.008) (0.009) (0.011) (0.010)
Treat*Low 0.006 0.005 0.009 0.003 0.003

(0.008) (0.008) (0.010) (0.012) (0.011)
Observations 256,461 199,826 143,615 87,481 105,927
Households 11,401 8,876 6,362 3,870 4,684
Sample Large only Large only Large only Large only Large only
Household FE Yes Yes Yes Yes Yes
Period-by-utility FEs Yes Yes Yes Yes Yes
Lot Size Int. Yes Yes Yes Yes Yes
Bandwidth (sqft) 1000 750 500 250 341

Notes: Dependent variable is average daily water consumption normalized by utility-specific
control group consumption. All specifications control for evapotranspiration and precipitation.
Robust standard errors are clustered at the household level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.2: Fuzzy RD estimates of the price-level effect without 17,500
lot-size threhold

(1) (2) (3) (4) (5)
1000sqft 750sqft 500sqft 250sqft Optimal

Treat -0.085∗∗∗ -0.083∗∗∗ -0.086∗∗∗ -0.070∗∗∗ -0.065∗∗∗

(0.018) (0.019) (0.019) (0.022) (0.021)
High Price*Treat 0.058 0.046 0.072∗ 0.019 0.025

(0.042) (0.045) (0.042) (0.051) (0.047)
Observations 256,461 199,826 143,615 87,481 105,927
Households 11,401 8,876 6,362 3,870 4,684
Household FEs Yes Yes Yes Yes Yes
Period-by-utility FEs Yes Yes Yes Yes Yes
Bandwidth 1000 750 500 250 341
First-Stage Coef 0.10 0.11 0.13 0.14 0.14
First-Stage SE 0.006 0.007 0.008 0.01 0.009

Notes: Dependent variable is average daily water consumption normalized by utility-
specific control group consumption. All specifications control for evapotranspiration
and precipitation. Robust standard errors are clustered at the household level. ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01
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Table A.3: Reduced-form diff-in-diff-in-discontinuity estimates of the price-level effect
without 17,500 lot-size threshold

(1) (2) (3) (4) (5)
1000sqft 750sqft 500sqft 250sqft Optimal

Treat -0.106∗∗∗ -0.097∗∗∗ -0.078∗∗∗ -0.108∗∗∗ -0.088∗∗∗

(0.016) (0.020) (0.025) (0.037) (0.031)
Treat*Large 0.043∗∗ 0.031 0.019 0.044 0.032

(0.018) (0.021) (0.027) (0.038) (0.033)
Treat*Low 0.003 0.004 0.004 0.016 0.015

(0.010) (0.012) (0.014) (0.019) (0.016)
Treat*Low*Large 0.003 0.001 0.006 -0.013 -0.011

(0.013) (0.015) (0.017) (0.022) (0.020)
Observations 379,115 290,848 205,660 123,161 151,534
Households 16,648 12,762 9,011 5,392 6,629
Sample Both Utilities Both Utilities Both Utilities Both Utilities Both Utilities
Household FE Yes Yes Yes Yes Yes
Period-by-utility FEs Yes Yes Yes Yes Yes
Lot Size Int. Yes Yes Yes Yes No
Bandwidth 1000 750 500 250 341

Notes: Dependent variable is average daily water consumption normalized by utility-specific control group
consumption. All specifications control for evapotranspiration and precipitation. Robust standard errors are
clustered at the household level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.4: Price-level effect: Large Utility with lot size interactions on both sides
of the threshold

(1) (2) (3) (4) (5)
1000sqft 750sqft 500sqft 250sqft Optimal

Treat -0.062∗∗∗ -0.066∗∗∗ -0.060∗∗∗ -0.063∗∗∗ -0.066∗∗∗

(0.006) (0.007) (0.008) (0.011) (0.011)
Treat*Low 0.019∗∗ 0.020∗∗ 0.024∗∗ 0.016 0.018

(0.009) (0.010) (0.011) (0.014) (0.015)
Observations 284,298 222,168 160,100 97,496 90,271
Households 12,615 9,849 7,082 4,309 3,990
Sample Large only Large only Large only Large only Large only
Household FE Yes Yes Yes Yes Yes
Period-by-utility FEs Yes Yes Yes Yes Yes
Lot Size Int. Yes Yes Yes Yes Yes
Bandwidth 1000 750 500 250 212

Notes: Dependent variable is average daily water consumption normalized by utility-specific
control group consumption. All specifications control for evapotranspiration and precipitation.
Columns designate the bandwidths around the lot size thresholds in sqft Robust standard errors
are clustered at the household level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.5: Price-level effect falsification test: Large utility only, with lot size
interactions, at individual discontinuities

(a) False 9000 sqft discontinuity
(1) (2) (3) (4) (5)

1000sqft 750sqft 500sqft 250sqft Optimal
Treat -0.030∗∗ -0.040∗∗∗ -0.034∗∗ -0.038∗∗ -0.041∗∗

(0.012) (0.013) (0.015) (0.019) (0.020)
Treat*Low -0.002 0.009 0.004 -0.002 0.006

(0.012) (0.014) (0.017) (0.021) (0.023)
Observations 86,467 61,694 40,375 21,396 18,280
Households 3,845 2,742 1,793 947 806
Sample Large only Large only Large only Large only Large only
Household FE Yes Yes Yes Yes Yes
Period-by-utility FEs Yes Yes Yes Yes Yes
Lot Size Int. No No No No No
Bandwidth 1000 750 500 250 212

(b) False 13,000 sqft discontinuity
(1) (2) (3) (4) (5)

1000sqft 750sqft 500sqft 250sqft Optimal
Treat -0.096∗∗∗ -0.086∗∗∗ -0.095∗∗∗ -0.041 -0.041

(0.020) (0.023) (0.029) (0.039) (0.045)
Treat*Low 0.021 0.004 -0.010 -0.063 -0.069

(0.024) (0.027) (0.036) (0.051) (0.058)
Observations 36,675 26,487 17,100 9,288 7,473
Households 1,605 1,160 748 408 328
Sample Large only Large only Large only Large only Large only
Household FE Yes Yes Yes Yes Yes
Period-by-utility FEs Yes Yes Yes Yes Yes
Lot Size Int. No No No No No
Bandwidth 1000 750 500 250 212

Notes: Dependent variable is average daily water consumption normalized by utility-specific
control group consumption within 1,000 sqft of the lot-size discontinuity. All specifications control
for evapotranspiration and precipitation. Robust standard errors are clustered at the household
level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.6: Persistence of the price-level effect

(1) (2) (3) (4) (5)
1000sqft 750sqft 500sqft 250sqft Optimal

Treat -0.060∗∗∗ -0.065∗∗∗ -0.062∗∗∗ -0.063∗∗∗ -0.071∗∗∗

(0.006) (0.007) (0.008) (0.011) (0.012)
Treat*Year 2 -0.001 0.001 0.008 0.002 0.015

(0.006) (0.007) (0.008) (0.010) (0.011)
Treat*Low 0.017∗∗ 0.015∗ 0.021∗∗ 0.008 0.011

(0.008) (0.008) (0.010) (0.013) (0.014)
Treat*Low*Year 2 -0.012 -0.007 -0.009 0.009 0.004

(0.007) (0.008) (0.010) (0.013) (0.014)
Observations 284,298 222,168 160,100 97,496 73,472
Households 12,615 9,849 7,082 4,309 3,241
Sample Large only Large only Large only Large only Large only
Household FE Yes Yes Yes Yes Yes
Period-by-utility FEs Yes Yes Yes Yes Yes
Lot Size Int. Yes Yes Yes Yes Yes
Bandwidth 1000 750 500 250 157

Notes: Dependent variable is average daily water consumption normalized by utility-specific
control group consumption. All specifications control for evapotranspiration and precipitation.
Columns designate the bandwidths around the lot size thresholds in sqft Robust standard errors
are clustered at the household level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.7: Seasonality of the price-level effect

(1) (2) (3) (4) (5)
1000sqft 750sqft 500sqft 250sqft Optimal

Treat -0.061∗∗∗ -0.064∗∗∗ -0.056∗∗∗ -0.056∗∗∗ -0.058∗∗∗

(0.006) (0.007) (0.008) (0.011) (0.013)
Treat*Summer 0.001 -0.001 -0.008 -0.015∗ -0.017∗

(0.006) (0.006) (0.007) (0.009) (0.009)
Treat*Low 0.030∗∗∗ 0.030∗∗∗ 0.032∗∗∗ 0.022∗ 0.021

(0.008) (0.008) (0.010) (0.013) (0.014)
Treat*Low*Summer -0.042∗∗∗ -0.043∗∗∗ -0.037∗∗∗ -0.026∗∗ -0.020

(0.007) (0.007) (0.009) (0.012) (0.012)
Observations 284,298 222,168 160,100 97,496 73,472
Households 12,615 9,849 7,082 4,309 3,241
Sample Large only Large only Large only Large only Large only
Household FE Yes Yes Yes Yes Yes
Period-by-utility FEs Yes Yes Yes Yes Yes
Lot Size Int. Yes Yes Yes Yes Yes
Bandwidth 1000 750 500 250 157

Notes: Dependent variable is average daily water consumption normalized by utility-specific
control group consumption. All specifications control for evapotranspiration and precipitation.
Columns designate the bandwidths around the lot size thresholds in sqft Robust standard errors
are clustered at the household level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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